मराठी

If Getting 5 Or 6 in a Throw of an Unbiased Die is a Success and the Random Variable X Denotes the Number of Successes in Six Throws of the Die, Find P (X ≥ 4). - Mathematics

Advertisements
Advertisements

प्रश्न

If getting 5 or 6 in a throw of an unbiased die is a success and the random variable X denotes the number of successes in six throws of the die, find P (X ≥ 4).

 
बेरीज

उत्तर

Let X denote the number of successes, i.e. of getting 5 or 6 in a throw of die in 6 throws.
Then, X follows a binomial distribution with n =6;

\[p = \text{ of getting 5 or 6 } = \frac{1}{6} + \frac{1}{6} = \frac{1}{3}; q = 1 - p = \frac{2}{3}; \]
\[P(X = r) = ^{6}{}{C}_r \left( \frac{1}{3} \right)^r \left( \frac{2}{3} \right)^{6 - r} \]
\[P(X \geq 4) = P(X = 4) + P(X = 5) + P(X = 6)\]
\[ = ^{6}{}{C}_4 \left( \frac{1}{3} \right)^4 \left( \frac{2}{3} \right)^{6 - 4} +^{6}{}{C}_5 \left( \frac{1}{3} \right)^5 \left( \frac{2}{3} \right)^{6 - 5} + ^{6}{}{C}_6 \left( \frac{1}{3} \right)^6 \left( \frac{2}{3} \right)^{6 - 6} \]
\[ = \frac{1}{3^6}(60 + 12 + 1)\]
\[ = \frac{73}{729}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 33: Binomial Distribution - Exercise 33.1 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 33 Binomial Distribution
Exercise 33.1 | Q 10 | पृष्ठ १३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Given that X ~ B(n= 10, p). If E(X) = 8 then the value of

p is ...........

(a) 0.6

(b) 0.7

(c) 0.8

(d) 0.4


An experiment succeeds twice as often as it fails. Find the probability that in the next six trials, there will be at least 4 successes.


Assume that on an average one telephone number out of 15 called between 2 P.M. and 3 P.M. on week days is busy. What is the probability that if six randomly selected telephone numbers are called, at least 3 of them will be busy?


Five dice are thrown simultaneously. If the occurrence of 3, 4 or 5 in a single die is considered a success, find the probability of at least 3 successes.


The items produced by a company contain 10% defective items. Show that the probability of getting 2 defective items in a sample of 8 items is

\[\frac{28 \times 9^6}{{10}^8} .\]

 


Six coins are tossed simultaneously. Find the probability of getting
(i) 3 heads
(ii) no heads
(iii) at least one head


Suppose that a radio tube inserted into a certain type of set has probability 0.2 of functioning more than 500 hours. If we test 4 tubes at random what is the probability that exactly three of these tubes function for more than 500 hours?


It is known that 60% of mice inoculated with a serum are protected from a certain disease. If 5 mice are inoculated, find the probability that none contract the disease .


The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university none will graduate 


Ten eggs are drawn successively, with replacement, from a lot containing 10% defective eggs. Find the probability that there is at least one defective egg.


A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability distribution of the number of successes.


Find the probability that in 10 throws of a fair die, a score which is a multiple of 3 will be obtained in at least 8 of the throws. 


A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that exactly two bulbs are defective


A box has 20 pens of which 2 are defective. Calculate the probability that out of 5 pens drawn one by one with replacement, at most 2 are defective.


If the mean and variance of a binomial distribution are respectively 9 and 6, find the distribution.


The mean of a binomial distribution is 20 and the standard deviation 4. Calculate the parameters of the binomial distribution.


Find the binomial distribution whose mean is 5 and variance \[\frac{10}{3} .\]

 

Find the expected number of boys in a family with 8 children, assuming the sex distribution to be equally probable.


If the sum of the mean and variance of a binomial distribution for 6 trials is \[\frac{10}{3},\]  find the distribution.

 
 

In a group of 200 items, if the probability of getting a defective item is 0.2, write the mean of the distribution.


A fair coin is tossed a fixed number of times. If the probability of getting seven heads is equal to that of getting nine heads, the probability of getting two heads is


A fair coin is tossed 99 times. If X is the number of times head appears, then P (X = r) is maximum when r is


The least number of times a fair coin must be tossed so that the probability of getting at least one head is at least 0.8, is


A coin is tossed 10 times. The probability of getting exactly six heads is


For a binomial variate X, if n = 3 and P (X = 1) = 8 P (X = 3), then p =


A coin is tossed n times. The probability of getting at least once is greater than 0.8. Then, the least value of n, is


Mark the correct alternative in the following question:
A box contains 100 pens of which 10 are defective. What is the probability that out of a sample of 5 pens drawn one by one with replacement at most one is defective?


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs more than one will fuse after 150 days of use 


 Determine the binomial distribution where mean is 9 and standard deviation is `3/2` Also, find the probability of obtaining at most one success. 


For X ~ B(n, p) and P(X = x) = `""^8"C"_x(1/2)^x (1/2)^(8 - x)`, then state value of n and p


The mean, median and mode for binomial distribution will be equal when


The sum of n terms of the series `1 + 2(1 + 1/n) + 3(1 + 1/n)^2 + ...` is


A pair of dice is thrown four times. If getting a doublet is considered a success then find the probability of two success.


A box B1 contains 1 white ball and 3 red balls. Another box B2 contains 2 white balls and 3 red balls. If one ball is drawn at random from each of the boxes B1 and B2, then find the probability that the two balls drawn are of the same colour.


If a random variable X follows the Binomial distribution B (33, p) such that 3P(X = 0) = P(X = 1), then the value of `(P(X = 15))/(P(X = 18)) - (P(X = 16))/(P(X = 17))` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×