Advertisements
Advertisements
Question
If getting 5 or 6 in a throw of an unbiased die is a success and the random variable X denotes the number of successes in six throws of the die, find P (X ≥ 4).
Solution
Let X denote the number of successes, i.e. of getting 5 or 6 in a throw of die in 6 throws.
Then, X follows a binomial distribution with n =6;
\[p = \text{ of getting 5 or 6 } = \frac{1}{6} + \frac{1}{6} = \frac{1}{3}; q = 1 - p = \frac{2}{3}; \]
\[P(X = r) = ^{6}{}{C}_r \left( \frac{1}{3} \right)^r \left( \frac{2}{3} \right)^{6 - r} \]
\[P(X \geq 4) = P(X = 4) + P(X = 5) + P(X = 6)\]
\[ = ^{6}{}{C}_4 \left( \frac{1}{3} \right)^4 \left( \frac{2}{3} \right)^{6 - 4} +^{6}{}{C}_5 \left( \frac{1}{3} \right)^5 \left( \frac{2}{3} \right)^{6 - 5} + ^{6}{}{C}_6 \left( \frac{1}{3} \right)^6 \left( \frac{2}{3} \right)^{6 - 6} \]
\[ = \frac{1}{3^6}(60 + 12 + 1)\]
\[ = \frac{73}{729}\]
APPEARS IN
RELATED QUESTIONS
In an examination, 20 questions of true-false type are asked. Suppose a student tosses a fair coin to determine his answer to each question. If the coin falls heads, he answers ‘true’; if it falls tails, he answers ‘false’. Find the probability that he answers at least 12 questions correctly.
It is known that 10% of certain articles manufactured are defective. What is the probability that in a random sample of 12 such articles, 9 are defective?
Suppose that 90% of people are right-handed. What is the probability that at most 6 of a random sample of 10 people are right-handed?
The probability that a student is not a swimmer is 1/5 . Then the probability that out of five students, four are swimmers is
(A) `""^5C_4 (4/5)^4 1/5`
(B) `(4/5)^4 1/5
(C) `""^5C_1 1/5 (4/5)^4 `
(D) None of these
An experiment succeeds twice as often as it fails. Find the probability that in the next six trials, there will be at least 4 successes.
A fair coin is tossed 8 times. Find the probability that it shows heads exactly 5 times.
Assume that on an average one telephone number out of 15 called between 2 P.M. and 3 P.M. on week days is busy. What is the probability that if six randomly selected telephone numbers are called, at least 3 of them will be busy?
Eight coins are thrown simultaneously. Find the chance of obtaining at least six heads.
A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that none is white ?
A box contains 100 tickets, each bearing one of the numbers from 1 to 100. If 5 tickets are drawn successively with replacement from the box, find the probability that all the tickets bear numbers divisible by 10.
A bag contains 2 white, 3 red and 4 blue balls. Two balls are drawn at random from the bag. If X denotes the number of white balls among the two balls drawn, describe the probability distribution of X.
Find the probability distribution of the number of doublets in 4 throws of a pair of dice.
Find the probability distribution of the number of sixes in three tosses of a die.
A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is \[\frac{1}{100} .\] What is the probability that he will win a prize exactly once.
How many times must a man toss a fair coin so that the probability of having at least one head is more than 80% ?
A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that more than 8 bulbs work properly
A box has 20 pens of which 2 are defective. Calculate the probability that out of 5 pens drawn one by one with replacement, at most 2 are defective.
If the probability of a defective bolt is 0.1, find the (i) mean and (ii) standard deviation for the distribution of bolts in a total of 400 bolts.
In eight throws of a die, 5 or 6 is considered a success. Find the mean number of successes and the standard deviation.
A dice is thrown thrice. A success is 1 or 6 in a throw. Find the mean and variance of the number of successes.
If in a binomial distribution mean is 5 and variance is 4, write the number of trials.
If the mean of a binomial distribution is 20 and its standard deviation is 4, find p.
If for a binomial distribution P (X = 1) = P (X = 2) = α, write P (X = 4) in terms of α.
A fair coin is tossed a fixed number of times. If the probability of getting seven heads is equal to that of getting nine heads, the probability of getting two heads is
Let X denote the number of times heads occur in n tosses of a fair coin. If P (X = 4), P (X= 5) and P (X = 6) are in AP, the value of n is
A fair coin is tossed 99 times. If X is the number of times head appears, then P (X = r) is maximum when r is
If X follows a binomial distribution with parameters n = 8 and p = 1/2, then P (|X − 4| ≤ 2) equals
Mark the correct alternative in the following question:
The probability that a person is not a swimmer is 0.3. The probability that out of 5 persons 4 are swimmers is
Mark the correct alternative in the following question:
Which one is not a requirement of a binomial dstribution?
Mark the correct alternative in the following question:
The probability of guessing correctly at least 8 out of 10 answers of a true false type examination is
A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that any two are white ?
Find the mean and variance of the random variable X which denotes the number of doublets in four throws of a pair of dice.
Which one is not a requirement of a binomial distribution?
The probability of hitting a target in any shot is 0.2. If 5 shots are fired, find the probability that the target will be hit at least twice.
A student is given a quiz with 10 true or false questions and he answers by sheer guessing. If X is the number of questions answered correctly write the p.m.f. of X. If the student passes the quiz by getting 7 or more correct answers what is the probability that the student passes the quiz?
If the sum of mean and variance of a binomial distribution is `25/9` for 5 trials, find p.
If X ∼ B(n, p), n = 6 and 9 P(X = 4) = P(X = 2), then find the value of p.