Advertisements
Advertisements
Question
Suppose that 90% of people are right-handed. What is the probability that at most 6 of a random sample of 10 people are right-handed?
Solution
Let p be the probability of success that people are right-handed
⇒ `p = 90/100 = 9/10`
and `q = 1 - p = 1 - 9/10 = 1/10`
∴ X has a binomial distribution with
`n = 10, p = 9/10, q = 1/10`
∴ P (X = r) = nCr (q)n-r pr
Required probability = P(at most 6 of 10 people are right-handed)
= P (X ≤ 6) = 1 - P (7 ≤ X ≤ 10)
`= 1 - sum_(r =17)^10 ""^10C_r (9/10)^r (1/10)^(10-r)`
`= 1- sum_(r=7)^10 ""^10C_r (0.9)^r (0.1)^(10-r)`
APPEARS IN
RELATED QUESTIONS
Find the probability of getting 5 exactly twice in 7 throws of a die.
A couple has two children, Find the probability that both children are females, if it is known that the elder child is a female.
In a hurdle race, a player has to cross 10 hurdles. The probability that he will clear each hurdle is 5/6 . What is the probability that he will knock down fewer than 2 hurdles?
An experiment succeeds twice as often as it fails. Find the probability that in the next six trials, there will be at least 4 successes.
Eight coins are thrown simultaneously. Find the chance of obtaining at least six heads.
Find the probability distribution of the number of sixes in three tosses of a die.
Three cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the mean and variance of number of red cards.
A card is drawn and replaced in an ordinary pack of 52 cards. How many times must a card be drawn so that (i) there is at least an even chance of drawing a heart (ii) the probability of drawing a heart is greater than 3/4?
The mathematics department has 8 graduate assistants who are assigned to the same office. Each assistant is just as likely to study at home as in office. How many desks must there be in the office so that each assistant has a desk at least 90% of the time?
Assume that the probability that a bomb dropped from an aeroplane will strike a certain target is 0.2. If 6 bombs are dropped, find the probability that at least 2 will strike the target
It is known that 60% of mice inoculated with a serum are protected from a certain disease. If 5 mice are inoculated, find the probability that none contract the disease .
It is known that 60% of mice inoculated with a serum are protected from a certain disease. If 5 mice are inoculated, find the probability that more than 3 contract the disease .
Ten eggs are drawn successively, with replacement, from a lot containing 10% defective eggs. Find the probability that there is at least one defective egg.
Suppose X has a binomial distribution with n = 6 and \[p = \frac{1}{2} .\] Show that X = 3 is the most likely outcome.
A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that more than 8 bulbs work properly
If the mean and variance of a binomial distribution are respectively 9 and 6, find the distribution.
The mean and variance of a binomial variate with parameters n and p are 16 and 8, respectively. Find P (X = 0), P (X = 1) and P (X ≥ 2).
Find the expected number of boys in a family with 8 children, assuming the sex distribution to be equally probable.
If a random variable X follows a binomial distribution with mean 3 and variance 3/2, find P (X ≤ 5).
If in a binomial distribution mean is 5 and variance is 4, write the number of trials.
If the mean and variance of a random variable X with a binomial distribution are 4 and 2 respectively, find P (X = 1).
If the mean and variance of a binomial variate X are 2 and 1 respectively, find P (X > 1).
If in a binomial distribution n = 4 and P (X = 0) = \[\frac{16}{81}\] , find q.
One hundred identical coins, each with probability p of showing heads are tossed once. If 0 < p < 1 and the probability of heads showing on 50 coins is equal to that of heads showing on 51 coins, the value of p is
The least number of times a fair coin must be tossed so that the probability of getting at least one head is at least 0.8, is
Fifteen coupons are numbered 1 to 15. Seven coupons are selected at random one at a time with replacement. The probability that the largest number appearing on a selected coupon is 9 is
A coin is tossed 10 times. The probability of getting exactly six heads is
The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs at least one will fuse after 150 days of use
Find the mean and variance of the random variable X which denotes the number of doublets in four throws of a pair of dice.
Explain why the experiment of tossing a coin three times is said to have binomial distribution.
Which one is not a requirement of a binomial distribution?
Suppose a random variable X follows the binomial distribution with parameters n and p, where 0 < p < 1. If P(x = r)/P(x = n – r) is independent of n and r, then p equals ______.
If x4 occurs in the tth term in the expansion of `(x^4 + 1/x^3)^15`, then the value oft is equal to:
If the coefficients of x7 and x8 in `(2 + x/3)^n` are equal, then n is
If a fair coin is tossed 10 times. Find the probability of getting at most six heads.
An experiment succeeds thrice as often as it fails. Then in next five trials, find the probability that there will be two successes.
The mean and variance of binomial distribution are 4 and 2 respectively. Find the probability of two successes.