Advertisements
Advertisements
Question
Find the probability of getting 5 exactly twice in 7 throws of a die.
Solution
The repeated tossing of a die are Bernoulli trials. Let X represent the number of times of getting 5 in 7 throws of the die.
Probability of getting 5 in a single throw of the die, p = 1/6
`:. q = 1 - p =1 - 1/6 = 5/6`
Clearly, X has the probability distribution with n = 7 and p = 1/6
APPEARS IN
RELATED QUESTIONS
Given X ~ B (n, p)
If n = 10 and p = 0.4, find E(X) and var (X).
A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of two successes.
Suppose X has a binomial distribution `B(6, 1/2)`. Show that X = 3 is the most likely outcome.
(Hint: P(X = 3) is the maximum among all P (xi), xi = 0, 1, 2, 3, 4, 5, 6)
A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is 1/100. What is the probability that he will in a prize (a) at least once (b) exactly once (c) at least twice?
Find the probability of throwing at most 2 sixes in 6 throws of a single die.
The probability that a student is not a swimmer is 1/5 . Then the probability that out of five students, four are swimmers is
(A) `""^5C_4 (4/5)^4 1/5`
(B) `(4/5)^4 1/5
(C) `""^5C_1 1/5 (4/5)^4 `
(D) None of these
Three cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the mean and variance of number of red cards.
A man wins a rupee for head and loses a rupee for tail when a coin is tossed. Suppose that he tosses once and quits if he wins but tries once more if he loses on the first toss. Find the probability distribution of the number of rupees the man wins.
The mathematics department has 8 graduate assistants who are assigned to the same office. Each assistant is just as likely to study at home as in office. How many desks must there be in the office so that each assistant has a desk at least 90% of the time?
The probability that a certain kind of component will survive a given shock test is \[\frac{3}{4} .\] Find the probability that among 5 components tested at most 3 will survive .
It is known that 60% of mice inoculated with a serum are protected from a certain disease. If 5 mice are inoculated, find the probability that more than 3 contract the disease .
The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university all will graduate .
In a multiple-choice examination with three possible answers for each of the five questions out of which only one is correct, what is the probability that a candidate would get four or more correct answers just by guessing?
A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is `1/100`. What is the probability that he will win a prize at least once.
The probability of a shooter hitting a target is \[\frac{3}{4} .\] How many minimum number of times must he/she fire so that the probability of hitting the target at least once is more than 0.99?
How many times must a man toss a fair coin so that the probability of having at least one head is more than 80% ?
A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that more than 8 bulbs work properly
Can the mean of a binomial distribution be less than its variance?
Determine the binomial distribution whose mean is 20 and variance 16.
The mean and variance of a binomial distribution are \[\frac{4}{3}\] and \[\frac{8}{9}\] respectively. Find P (X ≥ 1).
In a group of 200 items, if the probability of getting a defective item is 0.2, write the mean of the distribution.
A fair coin is tossed 99 times. If X is the number of times head appears, then P (X = r) is maximum when r is
If X follows a binomial distribution with parameters n = 8 and p = 1/2, then P (|X − 4| ≤ 2) equals
If X follows a binomial distribution with parameters n = 100 and p = 1/3, then P (X = r) is maximum when r =
The probability of selecting a male or a female is same. If the probability that in an office of n persons (n − 1) males being selected is \[\frac{3}{2^{10}}\] , the value of n is
Mark the correct alternative in the following question:
The probability that a person is not a swimmer is 0.3. The probability that out of 5 persons 4 are swimmers is
Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that none is a spade ?
The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs not more than one will fuse after 150 days of use
Bernoulli distribution is a particular case of binomial distribution if n = ______
Explain why the experiment of tossing a coin three times is said to have binomial distribution.
If in the binomial expansion of (1 + x)n where n is a natural number, the coefficients of the 5th, 6th and 7th terms are in A.P., then n is equal to:
A box B1 contains 1 white ball and 3 red balls. Another box B2 contains 2 white balls and 3 red balls. If one ball is drawn at random from each of the boxes B1 and B2, then find the probability that the two balls drawn are of the same colour.
A fair coin is tossed 8 times. Find the probability that it shows heads at most once.
A student is given a quiz with 10 true or false questions and he answers by sheer guessing. If X is the number of questions answered correctly write the p.m.f. of X. If the student passes the quiz by getting 7 or more correct answers what is the probability that the student passes the quiz?
A fair coin is tossed 6 times. Find the probability of getting heads 4 times.
If X ∼ B(n, p), n = 6 and 9 P(X = 4) = P(X = 2), then find the value of p.