English

Explain why the experiment of tossing a coin three times is said to have binomial distribution. - Mathematics

Advertisements
Advertisements

Question

Explain why the experiment of tossing a coin three times is said to have binomial distribution.

Sum

Solution

We know that random variable X takes values 0, 1, 2, 3, ..., n is said to be binomial distribution having parameters n and p

If the probability is given by

P(X = r) = `""^"n""C"_"r" "p"^"r" "q"^("n" - "r")`

Where q = 1 – p and r = 0, 1, 2, 3, ...

Similarly in case of tossing a coin 3 times,

n = 3 and X has the values 0, 1, 2, 3 with p = `1/2`, q = `1/2`.

Hence, it is said to have a binomial distribution.

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Probability - Exercise [Page 272]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 13 Probability
Exercise | Q 6 | Page 272

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

There are 5% defective items in a large bulk of items. What is the probability that a sample of 10 items will include not more than one defective item?


A bag consists of 10 balls each marked with one of the digits 0 to 9. If four balls are drawn successively with replacement from the bag, what is the probability that none is marked with the digit 0?


In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs, none is defective is

(A) 10−1

(B) `(1/2)^5`

(C) `(9/10)^5`

(D) 9/10


A couple has two children, Find the probability that both children are females, if it is known that the elder child is a female.


Suppose that 90% of people are right-handed. What is the probability that at most 6 of a random sample of 10 people are right-handed?


Eight coins are thrown simultaneously. Find the chance of obtaining at least six heads.

 

A box contains 100 tickets, each bearing one of the numbers from 1 to 100. If 5 tickets are drawn successively with replacement from the box, find the probability that all the tickets bear numbers divisible by 10.


A bag contains 10 balls, each marked with one of the digits from 0 to 9. If four balls are drawn successively with replacement from the bag, what is the probability that none is marked with the digit 0?


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs none will fuse after 150 days of use 


A bag contains 2 white, 3 red and 4 blue balls. Two balls are drawn at random from the bag. If X denotes the number of white balls among the two balls drawn, describe the probability distribution of X.


The items produced by a company contain 10% defective items. Show that the probability of getting 2 defective items in a sample of 8 items is

\[\frac{28 \times 9^6}{{10}^8} .\]

 


Six coins are tossed simultaneously. Find the probability of getting
(i) 3 heads
(ii) no heads
(iii) at least one head


The probability that a certain kind of component will survive a given shock test is \[\frac{3}{4} .\]  Find the probability that among 5 components tested exactly 2 will survive .

 

In a 20-question true-false examination, suppose a student tosses a fair coin to determine his answer to each question. For every head, he answers 'true' and for every tail, he answers 'false'. Find the probability that he answers at least 12 questions correctly.


A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is `1/100`. What is the probability that he will win a prize at least once. 


The probability of a shooter hitting a target is \[\frac{3}{4} .\] How many minimum number of times must he/she fire so that the probability of hitting the target at least once is more than 0.99?

 

From a lot of 30 bulbs that includes 6 defective bulbs, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.


If on an average 9 ships out of 10 arrive safely at ports, find the mean and S.D. of the ships returning safely out of a total of 500 ships.


In eight throws of a die, 5 or 6 is considered a success. Find the mean number of successes and the standard deviation.


Find the expected number of boys in a family with 8 children, assuming the sex distribution to be equally probable.


If in a binomial distribution mean is 5 and variance is 4, write the number of trials.

 

If the mean and variance of a random variable X with a binomial distribution are 4 and 2 respectively, find P (X = 1).

 

In a box containing 100 bulbs, 10 are defective. What is the probability that out of a sample of 5 bulbs, none is defective?


The least number of times a fair coin must be tossed so that the probability of getting at least one head is at least 0.8, is


Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that  only 3 cards are spades ? 


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs at least one will fuse after 150 days of use 


 Determine the binomial distribution where mean is 9 and standard deviation is `3/2` Also, find the probability of obtaining at most one success. 


Bernoulli distribution is a particular case of binomial distribution if n = ______


An experiment succeeds thrice as often as it fails. Then in next five trials, find the probability that there will be two successes.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×