English

If in a Binomial Distribution Mean is 5 and Variance is 4, Write the Number of Trials. - Mathematics

Advertisements
Advertisements

Question

If in a binomial distribution mean is 5 and variance is 4, write the number of trials.

 

Solution

\[\text{ Mean = 5 and Variance }  = 4\]
\[ \Rightarrow \text{ np = 5 and npq } = 4 \]
\[ \Rightarrow q = 0 . 8 \]
\[ \Rightarrow p = 1 - q = 0 . 2\]
& np = n(0 . 2) = 5 (given) 
\[ \Rightarrow n = \frac{5}{0 . 2} = 25\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 33: Binomial Distribution - Very Short Answers [Page 27]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 33 Binomial Distribution
Very Short Answers | Q 2 | Page 27

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Given that X ~ B(n= 10, p). If E(X) = 8 then the value of

p is ...........

(a) 0.6

(b) 0.7

(c) 0.8

(d) 0.4


The probability that a bomb will hit a target is 0.8. Find the probability that out of 10 bombs dropped, exactly 4 will hit the target.


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. What is the probability that out of 5 such bulbs
(i) none
(ii) not more than one
(iii) more than one
(iv) at least one, will fuse after 150 days of use.


Suppose X has a binomial distribution `B(6, 1/2)`. Show that X = 3 is the most likely outcome.

(Hint: P(X = 3) is the maximum among all P (xi), xi = 0, 1, 2, 3, 4, 5, 6)


Find the probability of throwing at most 2 sixes in 6 throws of a single die.


How many times must a man toss a fair coin so that the probability of having at least one head is more than 90%?


Assume that on an average one telephone number out of 15 called between 2 P.M. and 3 P.M. on week days is busy. What is the probability that if six randomly selected telephone numbers are called, at least 3 of them will be busy?


If getting 5 or 6 in a throw of an unbiased die is a success and the random variable X denotes the number of successes in six throws of the die, find P (X ≥ 4).

 

A box contains 100 tickets, each bearing one of the numbers from 1 to 100. If 5 tickets are drawn successively with replacement from the box, find the probability that all the tickets bear numbers divisible by 10.


Suppose that 90% of people are right-handed. What is the probability that at most 6 of a random sample of 10 people are right-handed?


Find the probability distribution of the number of sixes in three tosses of a die.

 

A card is drawn and replaced in an ordinary pack of 52 cards. How many times must a card be drawn so that (i) there is at least an even chance of drawing a heart (ii) the probability of drawing a heart is greater than 3/4?


Assume that the probability that a bomb dropped from an aeroplane will strike a certain target is 0.2. If 6 bombs are dropped, find the probability that at least 2 will strike the target

 

The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university only one will graduate .


In a 20-question true-false examination, suppose a student tosses a fair coin to determine his answer to each question. For every head, he answers 'true' and for every tail, he answers 'false'. Find the probability that he answers at least 12 questions correctly.


A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is \[\frac{1}{100} .\]  What is the probability that he will win a prize at least twice.


A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that none of the bulbs is defective .

 

Find the binomial distribution when the sum of its mean and variance for 5 trials is 4.8.

 

In a binomial distribution the sum and product of the mean and the variance are \[\frac{25}{3}\] and \[\frac{50}{3}\]

 respectively. Find the distribution.

 
 

If the probability of a defective bolt is 0.1, find the (i) mean and (ii) standard deviation for the distribution of bolts in a total of 400 bolts.


The probability that an item produced by a factory is defective is 0.02. A shipment of 10,000 items is sent to its warehouse. Find the expected number of defective items and the standard deviation.


If a random variable X follows a binomial distribution with mean 3 and variance 3/2, find P (X ≤ 5).


In a group of 200 items, if the probability of getting a defective item is 0.2, write the mean of the distribution.


If the mean and variance of a binomial distribution are 4 and 3, respectively, find the probability of no success.


If in a binomial distribution n = 4, P (X = 0) = \[\frac{16}{81}\], then P (X = 4) equals

 


A rifleman is firing at a distant target and has only 10% chance of hitting it. The least number of rounds he must fire in order to have more than 50% chance of hitting it at least once is


A fair coin is tossed a fixed number of times. If the probability of getting seven heads is equal to that of getting nine heads, the probability of getting two heads is


The least number of times a fair coin must be tossed so that the probability of getting at least one head is at least 0.8, is


A biased coin with probability p, 0 < p < 1, of heads is tossed until a head appears for the first time. If the probability that the number of tosses required is even is 2/5, then p equals


A fair die is tossed eight times. The probability that a third six is observed in the eighth throw is


A coin is tossed 10 times. The probability of getting exactly six heads is


Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that  only 3 cards are spades ? 


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs at least one will fuse after 150 days of use 


 Determine the binomial distribution where mean is 9 and standard deviation is `3/2` Also, find the probability of obtaining at most one success. 


Find the mean and variance of the random variable X which denotes the number of doublets in four throws of a pair of dice.


The mean, median and mode for binomial distribution will be equal when


If a fair coin is tossed 10 times. Find the probability of getting at most six heads.


If the sum of mean and variance of a binomial distribution is `25/9` for 5 trials, find p.


The mean and variance of binomial distribution are 4 and 2 respectively. Find the probability of two successes.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×