English

Mark the Correct Alternative in the Following Question: Which One is Not a Requirement of a Binomial Dstribution? - Mathematics

Advertisements
Advertisements

Question

Mark the correct alternative in the following question:

Which one is not a requirement of a binomial dstribution?

Options

  • There are 2 outcomes for each trial

  • There is a fixed number of trials

  • The outcomes must be dependent on each other

  • The probability of success must be the same for all the trials.

     
MCQ

Solution

Since, the trials of the binomial distribution are independent

So, the outcomes should not be dependent on each other

shaalaa.com
  Is there an error in this question or solution?
Chapter 33: Binomial Distribution - MCQ [Page 30]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 33 Binomial Distribution
MCQ | Q 29 | Page 30

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

The probability that a bomb will hit a target is 0.8. Find the probability that out of 10 bombs dropped, exactly 4 will hit the target.


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. What is the probability that out of 5 such bulbs
(i) none
(ii) not more than one
(iii) more than one
(iv) at least one, will fuse after 150 days of use.


Suppose that 90% of people are right-handed. What is the probability that at most 6 of a random sample of 10 people are right-handed?


An experiment succeeds twice as often as it fails. Find the probability that in the next six trials, there will be at least 4 successes.


If getting 5 or 6 in a throw of an unbiased die is a success and the random variable X denotes the number of successes in six throws of the die, find P (X ≥ 4).

 

A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that none is white ?


A box contains 100 tickets, each bearing one of the numbers from 1 to 100. If 5 tickets are drawn successively with replacement from the box, find the probability that all the tickets bear numbers divisible by 10.


A bag contains 7 green, 4 white and 5 red balls. If four balls are drawn one by one with replacement, what is the probability that one is red?


Six coins are tossed simultaneously. Find the probability of getting
(i) 3 heads
(ii) no heads
(iii) at least one head


The probability that a certain kind of component will survive a given shock test is \[\frac{3}{4} .\]  Find the probability that among 5 components tested at most 3 will survive .

 

Ten eggs are drawn successively, with replacement, from a lot containing 10% defective eggs. Find the probability that there is at least one defective egg.


A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is \[\frac{1}{100} .\]  What is the probability that he will win a prize exactly once.


The probability of a man hitting a target is 0.25. He shoots 7 times. What is the probability of his hitting at least twice?


A box has 20 pens of which 2 are defective. Calculate the probability that out of 5 pens drawn one by one with replacement, at most 2 are defective.


Can the mean of a binomial distribution be less than its variance?

 

In a binomial distribution the sum and product of the mean and the variance are \[\frac{25}{3}\] and \[\frac{50}{3}\]

 respectively. Find the distribution.

 
 

If on an average 9 ships out of 10 arrive safely at ports, find the mean and S.D. of the ships returning safely out of a total of 500 ships.


In a binomial distribution, if n = 20 and q = 0.75, then write its mean.

 

If in a binomial distribution mean is 5 and variance is 4, write the number of trials.

 

If the mean of a binomial distribution is 20 and its standard deviation is 4, find p.

 

If the mean and variance of a binomial variate X are 2 and 1 respectively, find P (X > 1).

 

If in a binomial distribution n = 4 and P (X = 0) = \[\frac{16}{81}\] , find q.

 
 

If the mean and variance of a binomial distribution are 4 and 3, respectively, find the probability of no success.


A fair coin is tossed a fixed number of times. If the probability of getting seven heads is equal to that of getting nine heads, the probability of getting two heads is


A fair coin is tossed 99 times. If X is the number of times head appears, then P (X = r) is maximum when r is


The least number of times a fair coin must be tossed so that the probability of getting at least one head is at least 0.8, is


A five-digit number is written down at random. The probability that the number is divisible by 5, and no two consecutive digits are identical, is


For a binomial variate X, if n = 3 and P (X = 1) = 8 P (X = 3), then p =


The probability of selecting a male or a female is same. If the probability that in an office of n persons (n − 1) males being selected is  \[\frac{3}{2^{10}}\] , the value of n is

 


Mark the correct alternative in the following question:
Suppose a random variable X follows the binomial distribution with parameters n and p, where 0 < p < 1. If \[\frac{P\left( X = r \right)}{P\left( X = n - r \right)}\] is independent of n and r, then p equals


Find the mean and variance of the random variable X which denotes the number of doublets in four throws of a pair of dice.


The sum of n terms of the series `1 + 2(1 + 1/n) + 3(1 + 1/n)^2 + ...` is


The mean and variance of a binomial distribution are α and `α/3` respectively. If P(X = 1) = `4/243`, then P(X = 4 or 5) is equal to ______.


The probability of hitting a target in any shot is 0.2. If 5 shots are fired, find the probability that the target will be hit at least twice.


A fair coin is tossed 8 times. Find the probability that it shows heads at most once.


A fair coin is tossed 6 times. Find the probability of getting heads 4 times.


The mean and variance of binomial distribution are 4 and 2 respectively. Find the probability of two successes.


For the binomial distribution X ∼ B(n, p), n = 6 and P(X = 4) = P(X = 2). find p.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×