Advertisements
Advertisements
प्रश्न
In a binomial distribution, if n = 20 and q = 0.75, then write its mean.
उत्तर
n= 20 , q =0.75
\[\Rightarrow p = 1 - q = 0 . 25\]
\[\text{ Mean = np } = 20(0 . 25) = 5\]
\[\text{ Thus, mean } = 5\]
APPEARS IN
संबंधित प्रश्न
A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of two successes.
On a multiple choice examination with three possible answers for each of the five questions, what is the probability that a candidate would get four or more correct answers just by guessing?
Find the probability of getting 5 exactly twice in 7 throws of a die.
Find the probability of throwing at most 2 sixes in 6 throws of a single die.
In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs, none is defective is
(A) 10−1
(B) `(1/2)^5`
(C) `(9/10)^5`
(D) 9/10
A couple has two children, Find the probability that both children are males, if it is known that at least one of the children is male.
A couple has two children, Find the probability that both children are females, if it is known that the elder child is a female.
The probability that a student is not a swimmer is 1/5 . Then the probability that out of five students, four are swimmers is
(A) `""^5C_4 (4/5)^4 1/5`
(B) `(4/5)^4 1/5
(C) `""^5C_1 1/5 (4/5)^4 `
(D) None of these
In a hurdle race, a player has to cross 10 hurdles. The probability that he will clear each hurdle is 5/6 . What is the probability that he will knock down fewer than 2 hurdles?
The probability of a man hitting a target is 1/4. If he fires 7 times, what is the probability of his hitting the target at least twice?
A box contains 100 tickets, each bearing one of the numbers from 1 to 100. If 5 tickets are drawn successively with replacement from the box, find the probability that all the tickets bear numbers divisible by 10.
An urn contains four white and three red balls. Find the probability distribution of the number of red balls in three draws with replacement from the urn.
Find the probability distribution of the number of doublets in 4 throws of a pair of dice.
An unbiased coin is tossed 8 times. Find, by using binomial distribution, the probability of getting at least 6 heads.
Suppose that a radio tube inserted into a certain type of set has probability 0.2 of functioning more than 500 hours. If we test 4 tubes at random what is the probability that exactly three of these tubes function for more than 500 hours?
Find the probability that in 10 throws of a fair die, a score which is a multiple of 3 will be obtained in at least 8 of the throws.
A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that exactly two bulbs are defective
Find the expected number of boys in a family with 8 children, assuming the sex distribution to be equally probable.
The mean and variance of a binomial distribution are \[\frac{4}{3}\] and \[\frac{8}{9}\] respectively. Find P (X ≥ 1).
If in a binomial distribution mean is 5 and variance is 4, write the number of trials.
The mean of a binomial distribution is 10 and its standard deviation is 2; write the value of q.
If in a binomial distribution n = 4 and P (X = 0) = \[\frac{16}{81}\] , find q.
If for a binomial distribution P (X = 1) = P (X = 2) = α, write P (X = 4) in terms of α.
In a box containing 100 bulbs, 10 are defective. What is the probability that out of a sample of 5 bulbs, none is defective?
If in a binomial distribution n = 4, P (X = 0) = \[\frac{16}{81}\], then P (X = 4) equals
A fair coin is tossed a fixed number of times. If the probability of getting seven heads is equal to that of getting nine heads, the probability of getting two heads is
A fair die is thrown twenty times. The probability that on the tenth throw the fourth six appears is
Let X denote the number of times heads occur in n tosses of a fair coin. If P (X = 4), P (X= 5) and P (X = 6) are in AP, the value of n is
A fair die is tossed eight times. The probability that a third six is observed in the eighth throw is
Fifteen coupons are numbered 1 to 15. Seven coupons are selected at random one at a time with replacement. The probability that the largest number appearing on a selected coupon is 9 is
A coin is tossed 4 times. The probability that at least one head turns up is
Mark the correct alternative in the following question:
Suppose a random variable X follows the binomial distribution with parameters n and p, where 0 < p < 1. If \[\frac{P\left( X = r \right)}{P\left( X = n - r \right)}\] is independent of n and r, then p equals
Determine the binomial distribution where mean is 9 and standard deviation is `3/2` Also, find the probability of obtaining at most one success.
Suppose a random variable X follows the binomial distribution with parameters n and p, where 0 < p < 1. If P(x = r)/P(x = n – r) is independent of n and r, then p equals ______.
If in the binomial expansion of (1 + x)n where n is a natural number, the coefficients of the 5th, 6th and 7th terms are in A.P., then n is equal to:
In three throws with a pair of dice find the chance of throwing doublets at least twice.
A fair coin is tossed 8 times. Find the probability that it shows heads at most once.