Advertisements
Advertisements
प्रश्न
Suppose that a radio tube inserted into a certain type of set has probability 0.2 of functioning more than 500 hours. If we test 4 tubes at random what is the probability that exactly three of these tubes function for more than 500 hours?
उत्तर
Let X denote the number of tubes that function for more than 500 hours.
Then, X follows a binomial distribution with n =4.
Let p be the probability that the tubes function more than 500 hours.
\[\text{ Here} , p = 0 . 2, q = 0 . 8\]
\[\text{ Hence, the distribution is given by} \]
\[P(X = r) = ^{4}{}{C}_r (0 . 2 )^r (0 . 8 )^{4 - r} , r = 0, 1, 2, 3, 4\]
\[\text{ Therefore, required probability } = P(X = 3) \]
\[ = 4(0 . 2 )^3 (0 . 8)\]
\[ = 0 . 0256\]
APPEARS IN
संबंधित प्रश्न
Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards. What is the probability that
- all the five cards are spades?
- only 3 cards are spades?
- none is a spade?
In an examination, 20 questions of true-false type are asked. Suppose a student tosses a fair coin to determine his answer to each question. If the coin falls heads, he answers ‘true’; if it falls tails, he answers ‘false’. Find the probability that he answers at least 12 questions correctly.
Suppose X has a binomial distribution `B(6, 1/2)`. Show that X = 3 is the most likely outcome.
(Hint: P(X = 3) is the maximum among all P (xi), xi = 0, 1, 2, 3, 4, 5, 6)
A couple has two children, Find the probability that both children are males, if it is known that at least one of the children is male.
A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that none is white ?
The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs none will fuse after 150 days of use
A bag contains 2 white, 3 red and 4 blue balls. Two balls are drawn at random from the bag. If X denotes the number of white balls among the two balls drawn, describe the probability distribution of X.
Three cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the mean and variance of number of red cards.
It is known that 60% of mice inoculated with a serum are protected from a certain disease. If 5 mice are inoculated, find the probability that more than 3 contract the disease .
Ten eggs are drawn successively, with replacement, from a lot containing 10% defective eggs. Find the probability that there is at least one defective egg.
The probability of a shooter hitting a target is \[\frac{3}{4} .\] How many minimum number of times must he/she fire so that the probability of hitting the target at least once is more than 0.99?
How many times must a man toss a fair coin so that the probability of having at least one head is more than 90% ?
The probability of a man hitting a target is 0.25. He shoots 7 times. What is the probability of his hitting at least twice?
A box has 20 pens of which 2 are defective. Calculate the probability that out of 5 pens drawn one by one with replacement, at most 2 are defective.
Determine the binomial distribution whose mean is 9 and variance 9/4.
Determine the binomial distribution whose mean is 20 and variance 16.
The mean of a binomial distribution is 20 and the standard deviation 4. Calculate the parameters of the binomial distribution.
In eight throws of a die, 5 or 6 is considered a success. Find the mean number of successes and the standard deviation.
If a random variable X follows a binomial distribution with mean 3 and variance 3/2, find P (X ≤ 5).
A die is thrown three times. Let X be 'the number of twos seen'. Find the expectation of X.
In a binomial distribution, if n = 20 and q = 0.75, then write its mean.
If in a binomial distribution mean is 5 and variance is 4, write the number of trials.
An unbiased coin is tossed 4 times. Find the mean and variance of the number of heads obtained.
If X follows binomial distribution with parameters n = 5, p and P(X = 2) = 9P(X = 3), then find the value of p.
If in a binomial distribution n = 4, P (X = 0) = \[\frac{16}{81}\], then P (X = 4) equals
If the mean and variance of a binomial variate X are 2 and 1 respectively, then the probability that X takes a value greater than 1 is
A five-digit number is written down at random. The probability that the number is divisible by 5, and no two consecutive digits are identical, is
A coin is tossed 4 times. The probability that at least one head turns up is
Mark the correct alternative in the following question:
The probability that a person is not a swimmer is 0.3. The probability that out of 5 persons 4 are swimmers is
The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs at least one will fuse after 150 days of use
Determine the binomial distribution where mean is 9 and standard deviation is `3/2` Also, find the probability of obtaining at most one success.
Explain why the experiment of tossing a coin three times is said to have binomial distribution.
In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs, none is defective is:-
An ordinary dice is rolled for a certain number of times. If the probability of getting an odd number 2 times is equal to the probability of getting an even number 3 times, then the probability of getting an odd number for odd number of times is ______.
A fair coin is tossed 8 times. Find the probability that it shows heads at most once.
A student is given a quiz with 10 true or false questions and he answers by sheer guessing. If X is the number of questions answered correctly write the p.m.f. of X. If the student passes the quiz by getting 7 or more correct answers what is the probability that the student passes the quiz?
A fair coin is tossed 6 times. Find the probability of getting heads 4 times.
If the sum of mean and variance of a binomial distribution is `25/9` for 5 trials, find p.