Advertisements
Advertisements
प्रश्न
Determine the binomial distribution whose mean is 20 and variance 16.
उत्तर
Mean, i.e. np =20 ....(1)
Variance, i.e. npq =16 ....(2)
\[\text{ Dividing eq (2) by eq (1), we get } \]
\[\frac{npq}{np} = \frac{16}{20}\]
\[ \Rightarrow q = \frac{4}{5}\]
\[ \Rightarrow p = 1 - q \]
\[ \therefore p = \frac{1}{5} \]
\[\text{ As np } = 20 \]
\[ \Rightarrow n = 100\]
\[ \therefore P(X = r) = ^{100}{}{C}_r \left( \frac{1}{5} \right)^r \left( \frac{4}{5} \right)^{100 - r} , r = 0, 1, 2 . . . . 100\]
APPEARS IN
संबंधित प्रश्न
The probability that a bomb will hit a target is 0.8. Find the probability that out of 10 bombs dropped, exactly 4 will hit the target.
On a multiple choice examination with three possible answers for each of the five questions, what is the probability that a candidate would get four or more correct answers just by guessing?
It is known that 10% of certain articles manufactured are defective. What is the probability that in a random sample of 12 such articles, 9 are defective?
An experiment succeeds twice as often as it fails. Find the probability that in the next six trials, there will be at least 4 successes.
Five cards are drawn one by one, with replacement, from a well-shuffled deck of 52 cards. Find the probability that
(i) all the five cards diamonds
(ii) only 3 cards are diamonds
(iii) none is a diamond
The probability of a man hitting a target is 1/4. If he fires 7 times, what is the probability of his hitting the target at least twice?
Suppose that 90% of people are right-handed. What is the probability that at most 6 of a random sample of 10 people are right-handed?
A bag contains 7 green, 4 white and 5 red balls. If four balls are drawn one by one with replacement, what is the probability that one is red?
A coin is tossed 5 times. If X is the number of heads observed, find the probability distribution of X.
An unbiased coin is tossed 8 times. Find, by using binomial distribution, the probability of getting at least 6 heads.
Six coins are tossed simultaneously. Find the probability of getting
(i) 3 heads
(ii) no heads
(iii) at least one head
It is known that 60% of mice inoculated with a serum are protected from a certain disease. If 5 mice are inoculated, find the probability that none contract the disease .
Suppose X has a binomial distribution with n = 6 and \[p = \frac{1}{2} .\] Show that X = 3 is the most likely outcome.
The probability of a shooter hitting a target is \[\frac{3}{4} .\] How many minimum number of times must he/she fire so that the probability of hitting the target at least once is more than 0.99?
A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability distribution of the number of successes.
In a binomial distribution the sum and product of the mean and the variance are \[\frac{25}{3}\] and \[\frac{50}{3}\]
respectively. Find the distribution.
The mean of a binomial distribution is 20 and the standard deviation 4. Calculate the parameters of the binomial distribution.
Find the expected number of boys in a family with 8 children, assuming the sex distribution to be equally probable.
A dice is thrown thrice. A success is 1 or 6 in a throw. Find the mean and variance of the number of successes.
A die is thrown three times. Let X be 'the number of twos seen'. Find the expectation of X.
If the mean and variance of a random variable X with a binomial distribution are 4 and 2 respectively, find P (X = 1).
An unbiased coin is tossed 4 times. Find the mean and variance of the number of heads obtained.
A fair coin is tossed 100 times. The probability of getting tails an odd number of times is
A fair coin is tossed 99 times. If X is the number of times head appears, then P (X = r) is maximum when r is
A biased coin with probability p, 0 < p < 1, of heads is tossed until a head appears for the first time. If the probability that the number of tosses required is even is 2/5, then p equals
If X follows a binomial distribution with parameters n = 100 and p = 1/3, then P (X = r) is maximum when r =
Mark the correct alternative in the following question:
The probability that a person is not a swimmer is 0.3. The probability that out of 5 persons 4 are swimmers is
Mark the correct alternative in the following question:
The probability of guessing correctly at least 8 out of 10 answers of a true false type examination is
Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that only 3 cards are spades ?
The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs at least one will fuse after 150 days of use
Determine the binomial distribution where mean is 9 and standard deviation is `3/2` Also, find the probability of obtaining at most one success.
For Bernoulli Distribution, state formula for E(X) and V(X).
For X ~ B(n, p) and P(X = x) = `""^8"C"_x(1/2)^x (1/2)^(8 - x)`, then state value of n and p
The sum of n terms of the series `1 + 2(1 + 1/n) + 3(1 + 1/n)^2 + ...` is
In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs, none is defective is:-
A pair of dice is thrown four times. If getting a doublet is considered a success then find the probability of two success.
The mean and variance of a binomial distribution are α and `α/3` respectively. If P(X = 1) = `4/243`, then P(X = 4 or 5) is equal to ______.
A fair coin is tossed 8 times. Find the probability that it shows heads at most once.
The mean and variance of binomial distribution are 4 and 2 respectively. Find the probability of two successes.