Advertisements
Advertisements
प्रश्न
A fair coin is tossed 99 times. If X is the number of times head appears, then P (X = r) is maximum when r is
विकल्प
49, 50
50, 51
51, 52
None of these
उत्तर
49, 50
When a coin is tossed 99 times, the number of heads X follows a binomial distribution with
\[p = q = \frac{1}{2} = 0 . 5\]
\[P(X = r) = ^{n}{}{C}_r (0 . 5 )^r (0 . 5 )^{n - r} = ^{n}{}{C}_r (0 . 5 )^n \]
\[As (0 . 5 )^n \text{ is common to all r it is enough if we find the maximum of }\ ^{\ n}{}{C}_r . \]
\[\text{ We know that for odd number of n, there will be two equal maximum terms, } \]
\[\text{ i . e . when } r = \frac{n - 1}{2}\text{ and } r = \frac{n + 1}{2}\]
\[\text{ Hence,} \ n = 99 \]
\[\text{ So, the maximum is obtained when r = 49 or } 50\]
APPEARS IN
संबंधित प्रश्न
The probability that a bomb will hit a target is 0.8. Find the probability that out of 10 bombs dropped, exactly 4 will hit the target.
Given X ~ B (n, p)
If n = 10 and p = 0.4, find E(X) and var (X).
There are 5% defective items in a large bulk of items. What is the probability that a sample of 10 items will include not more than one defective item?
Suppose X has a binomial distribution `B(6, 1/2)`. Show that X = 3 is the most likely outcome.
(Hint: P(X = 3) is the maximum among all P (xi), xi = 0, 1, 2, 3, 4, 5, 6)
On a multiple choice examination with three possible answers for each of the five questions, what is the probability that a candidate would get four or more correct answers just by guessing?
In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs, none is defective is
(A) 10−1
(B) `(1/2)^5`
(C) `(9/10)^5`
(D) 9/10
A couple has two children, Find the probability that both children are males, if it is known that at least one of the children is male.
A bag contains 10 balls, each marked with one of the digits from 0 to 9. If four balls are drawn successively with replacement from the bag, what is the probability that none is marked with the digit 0?
A bag contains 7 green, 4 white and 5 red balls. If four balls are drawn one by one with replacement, what is the probability that one is red?
A coin is tossed 5 times. If X is the number of heads observed, find the probability distribution of X.
A card is drawn and replaced in an ordinary pack of 52 cards. How many times must a card be drawn so that (i) there is at least an even chance of drawing a heart (ii) the probability of drawing a heart is greater than 3/4?
The probability that a certain kind of component will survive a given shock test is \[\frac{3}{4} .\] Find the probability that among 5 components tested exactly 2 will survive .
Assume that the probability that a bomb dropped from an aeroplane will strike a certain target is 0.2. If 6 bombs are dropped, find the probability that at least 2 will strike the target
Ten eggs are drawn successively, with replacement, from a lot containing 10% defective eggs. Find the probability that there is at least one defective egg.
A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is `1/100`. What is the probability that he will win a prize at least once.
A die is thrown 5 times. Find the probability that an odd number will come up exactly three times.
The probability of a man hitting a target is 0.25. He shoots 7 times. What is the probability of his hitting at least twice?
The mean of a binomial distribution is 20 and the standard deviation 4. Calculate the parameters of the binomial distribution.
Find the binomial distribution whose mean is 5 and variance \[\frac{10}{3} .\]
If on an average 9 ships out of 10 arrive safely at ports, find the mean and S.D. of the ships returning safely out of a total of 500 ships.
The probability that an item produced by a factory is defective is 0.02. A shipment of 10,000 items is sent to its warehouse. Find the expected number of defective items and the standard deviation.
A die is thrown three times. Let X be 'the number of twos seen'. Find the expectation of X.
If in a binomial distribution mean is 5 and variance is 4, write the number of trials.
In a group of 200 items, if the probability of getting a defective item is 0.2, write the mean of the distribution.
A fair coin is tossed a fixed number of times. If the probability of getting seven heads is equal to that of getting nine heads, the probability of getting two heads is
Let X denote the number of times heads occur in n tosses of a fair coin. If P (X = 4), P (X= 5) and P (X = 6) are in AP, the value of n is
If X follows a binomial distribution with parameters n = 8 and p = 1/2, then P (|X − 4| ≤ 2) equals
If X follows a binomial distribution with parameters n = 100 and p = 1/3, then P (X = r) is maximum when r =
If the mean and variance of a binomial distribution are 4 and 3, respectively, the probability of getting exactly six successes in this distribution is
In a binomial distribution, the probability of getting success is 1/4 and standard deviation is 3. Then, its mean is
A coin is tossed 4 times. The probability that at least one head turns up is
Mark the correct alternative in the following question:
A box contains 100 pens of which 10 are defective. What is the probability that out of a sample of 5 pens drawn one by one with replacement at most one is defective?
Mark the correct alternative in the following question:
Which one is not a requirement of a binomial dstribution?
A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that any two are white ?
For X ~ B(n, p) and P(X = x) = `""^8"C"_x(1/2)^x (1/2)^(8 - x)`, then state value of n and p
Suppose a random variable X follows the binomial distribution with parameters n and p, where 0 < p < 1. If P(x = r)/P(x = n – r) is independent of n and r, then p equals ______.
If a random variable X follows the Binomial distribution B(5, p) such that P(X = 0) = P(X = 1), then `(P(X = 2))/(P(X = 3))` is equal to ______.
The probability of hitting a target in any shot is 0.2. If 5 shots are fired, find the probability that the target will be hit at least twice.