हिंदी

One Hundred Identical Coins, Each with Probability P of Showing Heads Are Tossed Once. If 0 < P < 1 and the Probability of Heads Showing on 50 Coins is Equal to that of Heads Showing on 51 Coins - Mathematics

Advertisements
Advertisements

प्रश्न

One hundred identical coins, each with probability p of showing heads are tossed once. If 0 < p < 1 and the probability of heads showing on 50 coins is equal to that of heads showing on 51 coins, the value of p is

विकल्प

  • 1/2

  • 51/101

  • 49/101

  • None of these

     
MCQ

उत्तर

51/101 

\[\text{ Let X denote the number of coins showing head .}  \]
\[\text{ Therefore, X follows a binomial distribution with p and n as parameters . }  \]
\[\text{ Given that } P(X = 50) = P(X = 51)\]
\[ \Rightarrow ^{100}{}{C}_{50} \ p^{50} q^{50} = ^{100}{}{C}_{51} \ p^{51}\  q^{49} \]
\[\text{ on simplifying we get } , \]
\[\frac{51}{50} = \frac{p}{q}\]
\[ \Rightarrow \frac{51}{50} = \frac{p}{1 - p} (\text{ since}  \ p + q = 1)\]
\[ \Rightarrow p = \frac{51}{101}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 33: Binomial Distribution - MCQ [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 33 Binomial Distribution
MCQ | Q 9 | पृष्ठ २८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

A fair coin is tossed 8 times. Find the probability that it shows heads at least once


The probability that a bomb will hit a target is 0.8. Find the probability that out of 10 bombs dropped, exactly 4 will hit the target.


Find the probability of throwing at most 2 sixes in 6 throws of a single die.


Suppose that 90% of people are right-handed. What is the probability that at most 6 of a random sample of 10 people are right-handed?


A fair coin is tossed 8 times. Find the probability that it shows heads exactly 5 times.



Five cards are drawn one by one, with replacement, from a well-shuffled deck of 52 cards. Find the probability that
(i) all the five cards diamonds
(ii) only 3 cards are diamonds
(iii) none is a diamond


Suppose that 90% of people are right-handed. What is the probability that at most 6 of a random sample of 10 people are right-handed?


A bag contains 7 green, 4 white and 5 red balls. If four balls are drawn one by one with replacement, what is the probability that one is red?


A man wins a rupee for head and loses a rupee for tail when a coin is tossed. Suppose that he tosses once and quits if he wins but tries once more if he loses on the first toss. Find the probability distribution of the number of rupees the man wins.


It is known that 60% of mice inoculated with a serum are protected from a certain disease. If 5 mice are inoculated, find the probability that none contract the disease .


An experiment succeeds twice as often as it fails. Find the probability that in the next 6 trials there will be at least 4 successes.

 

In a 20-question true-false examination, suppose a student tosses a fair coin to determine his answer to each question. For every head, he answers 'true' and for every tail, he answers 'false'. Find the probability that he answers at least 12 questions correctly.


A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is \[\frac{1}{100} .\]  What is the probability that he will win a prize exactly once.


How many times must a man toss a fair coin so that the probability of having at least one head is more than 80% ?


In eight throws of a die, 5 or 6 is considered a success. Find the mean number of successes and the standard deviation.


If a random variable X follows a binomial distribution with mean 3 and variance 3/2, find P (X ≤ 5).


A die is thrown three times. Let X be 'the number of twos seen'. Find the expectation of X.    


If the mean of a binomial distribution is 20 and its standard deviation is 4, find p.

 

If X follows binomial distribution with parameters n = 5, p and P(X = 2) = 9P(X = 3), then find the value of p.  


Let X denote the number of times heads occur in n tosses of a fair coin. If P (X = 4), P (X= 5) and P (X = 6) are in AP, the value of n is 


A biased coin with probability p, 0 < p < 1, of heads is tossed until a head appears for the first time. If the probability that the number of tosses required is even is 2/5, then p equals


If X follows a binomial distribution with parameters n = 8 and p = 1/2, then P (|X − 4| ≤ 2) equals


If X follows a binomial distribution with parameters n = 100 and p = 1/3, then P (X = r) is maximum when r =


For a binomial variate X, if n = 3 and P (X = 1) = 8 P (X = 3), then p =


Mark the correct alternative in the following question:

The probability of guessing correctly at least 8 out of 10 answers of a true false type examination is


A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that any two are white ?


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs more than one will fuse after 150 days of use 


 Determine the binomial distribution where mean is 9 and standard deviation is `3/2` Also, find the probability of obtaining at most one success. 


Bernoulli distribution is a particular case of binomial distribution if n = ______


One of the condition of Bernoulli trials is that the trials are independent of each other.


Explain why the experiment of tossing a coin three times is said to have binomial distribution.


Suppose a random variable X follows the binomial distribution with parameters n and p, where 0 < p < 1. If P(x = r)/P(x = n – r) is independent of n and r, then p equals ______.


If in the binomial expansion of (1 + x)n where n is a natural number, the coefficients of the 5th, 6th and 7th terms are in A.P., then n is equal to:


If a fair coin is tossed 10 times. Find the probability of getting at most six heads.


A box B1 contains 1 white ball and 3 red balls. Another box B2 contains 2 white balls and 3 red balls. If one ball is drawn at random from each of the boxes B1 and B2, then find the probability that the two balls drawn are of the same colour.


If a random variable X follows the Binomial distribution B(5, p) such that P(X = 0) = P(X = 1), then `(P(X = 2))/(P(X = 3))` is equal to ______.


The probability of hitting a target in any shot is 0.2. If 5 shots are fired, find the probability that the target will be hit at least twice.


If X ∼ B(n, p), n = 6 and 9 P(X = 4) = P(X = 2), then find the value of p.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×