Advertisements
Advertisements
प्रश्न
Mark the correct alternative in the following question:
The probability of guessing correctly at least 8 out of 10 answers of a true false type examination is
विकल्प
\[\frac{7}{64}\]
\[\frac{7}{128}\]
\[\frac{45}{1024} \]
\[\frac{7}{41}\]
उत्तर
\[\text{ We have,} \]
\[p = \text{ probabiltiy of guessing the answer of a true false correctly } = \frac{1}{2} \text{ and } \]
\[q = \text{ probabiltiy of guessing the answer of a true false incorrectly } = 1 - p = 1 - \frac{1}{2} = \frac{1}{2}\]
\[\text{ Let X denote a success of guessing the answer correctly . Then, } \]
\[\text{ X follows the binomial distribution with parameters n = 10 and } p = \frac{1}{2}\]
\[ \therefore P\left( X = r \right) = ^{10}{}{C}_r p^r q^\left( 10 - r \right) = ^{10}{}{C}_r \left( \frac{1}{2} \right)^r \left( \frac{1}{2} \right)^\left( 10 - r \right) = ^{10}{}{C}_r \left( \frac{1}{2} \right)^{10} = \frac{^{10}{}{C}_r}{2^{10}}\]
\[\text{ Now } , \]
\[\text{ Required probability } = P\left( X \geq 8 \right)\]
\[ = P\left( X = 8 \right) + P\left( X = 9 \right) + P\left( X = 10 \right)\]
\[ = \frac{^{10}{}{C}_8}{2^{10}} + \frac{^{10}{}{C}_9}{2^{10}} + \frac{^{10}{}{C}_{10}}{2^{10}}\]
\[ = \frac{45 + 10 + 1}{2^{10}}\]
\[ = \frac{56}{1024}\]
\[ = \frac{7}{128}\]
APPEARS IN
संबंधित प्रश्न
Given that X ~ B(n= 10, p). If E(X) = 8 then the value of
p is ...........
(a) 0.6
(b) 0.7
(c) 0.8
(d) 0.4
A bag consists of 10 balls each marked with one of the digits 0 to 9. If four balls are drawn successively with replacement from the bag, what is the probability that none is marked with the digit 0?
Find the probability of throwing at most 2 sixes in 6 throws of a single die.
In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs, none is defective is
(A) 10−1
(B) `(1/2)^5`
(C) `(9/10)^5`
(D) 9/10
A couple has two children, Find the probability that both children are males, if it is known that at least one of the children is male.
A fair coin is tossed 8 times. Find the probability that it shows heads exactly 5 times.
The probability of a man hitting a target is 1/4. If he fires 7 times, what is the probability of his hitting the target at least twice?
Eight coins are thrown simultaneously. Find the chance of obtaining at least six heads.
A coin is tossed 5 times. If X is the number of heads observed, find the probability distribution of X.
A card is drawn and replaced in an ordinary pack of 52 cards. How many times must a card be drawn so that (i) there is at least an even chance of drawing a heart (ii) the probability of drawing a heart is greater than 3/4?
The probability that a certain kind of component will survive a given shock test is \[\frac{3}{4} .\] Find the probability that among 5 components tested at most 3 will survive .
Assume that the probability that a bomb dropped from an aeroplane will strike a certain target is 0.2. If 6 bombs are dropped, find the probability that at least 2 will strike the target
The probability of a shooter hitting a target is \[\frac{3}{4} .\] How many minimum number of times must he/she fire so that the probability of hitting the target at least once is more than 0.99?
How many times must a man toss a fair coin so that the probability of having at least one head is more than 90% ?
How many times must a man toss a fair coin so that the probability of having at least one head is more than 80% ?
A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability distribution of the number of successes.
A dice is thrown thrice. A success is 1 or 6 in a throw. Find the mean and variance of the number of successes.
A die is thrown three times. Let X be 'the number of twos seen'. Find the expectation of X.
In a binomial distribution, if n = 20 and q = 0.75, then write its mean.
If the mean and variance of a binomial variate X are 2 and 1 respectively, find P (X > 1).
If for a binomial distribution P (X = 1) = P (X = 2) = α, write P (X = 4) in terms of α.
An unbiased coin is tossed 4 times. Find the mean and variance of the number of heads obtained.
In a box containing 100 bulbs, 10 are defective. What is the probability that out of a sample of 5 bulbs, none is defective?
A rifleman is firing at a distant target and has only 10% chance of hitting it. The least number of rounds he must fire in order to have more than 50% chance of hitting it at least once is
A fair coin is tossed a fixed number of times. If the probability of getting seven heads is equal to that of getting nine heads, the probability of getting two heads is
A fair coin is tossed 100 times. The probability of getting tails an odd number of times is
One hundred identical coins, each with probability p of showing heads are tossed once. If 0 < p < 1 and the probability of heads showing on 50 coins is equal to that of heads showing on 51 coins, the value of p is
If the mean and variance of a binomial variate X are 2 and 1 respectively, then the probability that X takes a value greater than 1 is
If X follows a binomial distribution with parameters n = 8 and p = 1/2, then P (|X − 4| ≤ 2) equals
Fifteen coupons are numbered 1 to 15. Seven coupons are selected at random one at a time with replacement. The probability that the largest number appearing on a selected coupon is 9 is
In a binomial distribution, the probability of getting success is 1/4 and standard deviation is 3. Then, its mean is
Mark the correct alternative in the following question:
The probability that a person is not a swimmer is 0.3. The probability that out of 5 persons 4 are swimmers is
For X ~ B(n, p) and P(X = x) = `""^8"C"_x(1/2)^x (1/2)^(8 - x)`, then state value of n and p
One of the condition of Bernoulli trials is that the trials are independent of each other.
If a random variable X follows the Binomial distribution B(5, p) such that P(X = 0) = P(X = 1), then `(P(X = 2))/(P(X = 3))` is equal to ______.
A fair coin is tossed 8 times. Find the probability that it shows heads at most once.