Advertisements
Advertisements
प्रश्न
If for a binomial distribution P (X = 1) = P (X = 2) = α, write P (X = 4) in terms of α.
उत्तर
\[\text{ For binomial distribution of X } , \]
\[P(X = r) = ^{n}{}{C}_r (p )^r (q )^{n - r} , r = 0, 1, 2, . . . , n\]
\[P(X = 1) = np(q )^{n - 1} \]
\[P(X = 2) =^{n}{}{C}_2 p^2 (q )^{n - 2} \]
\[ \Rightarrow np(q )^{n - 1} = ^{n}{}{C}_2 p^2 (q )^{n - 2} = \alpha \]
\[\text{ Simplifying the above equation we get,} \]
\[q = \frac{n - 1}{2}p\]
\[ \Rightarrow 2q = np - p \]
\[\text{ On putting, q = 1 - p we get } \]
\[2 - 2p = np - p \]
\[p(n + 1) = 2 . . . . . (i)\]
\[\text{ Also} , P(X = 1) = \alpha\]
\[ \Rightarrow np(1 - p )^{n - 1} = \alpha . . . . . (ii)\]
Note: We cannot find the value of n as (i) and (ii) are not linear and hence we cannot find the value of P(X = 4)
APPEARS IN
संबंधित प्रश्न
In an examination, 20 questions of true-false type are asked. Suppose a student tosses a fair coin to determine his answer to each question. If the coin falls heads, he answers ‘true’; if it falls tails, he answers ‘false’. Find the probability that he answers at least 12 questions correctly.
Suppose X has a binomial distribution `B(6, 1/2)`. Show that X = 3 is the most likely outcome.
(Hint: P(X = 3) is the maximum among all P (xi), xi = 0, 1, 2, 3, 4, 5, 6)
It is known that 10% of certain articles manufactured are defective. What is the probability that in a random sample of 12 such articles, 9 are defective?
A couple has two children, Find the probability that both children are males, if it is known that at least one of the children is male.
A couple has two children, Find the probability that both children are females, if it is known that the elder child is a female.
Suppose that 90% of people are right-handed. What is the probability that at most 6 of a random sample of 10 people are right-handed?
A fair coin is tossed 9 times. Find the probability that it shows head exactly 5 times.
If getting 5 or 6 in a throw of an unbiased die is a success and the random variable X denotes the number of successes in six throws of the die, find P (X ≥ 4).
A box contains 100 tickets, each bearing one of the numbers from 1 to 100. If 5 tickets are drawn successively with replacement from the box, find the probability that all the tickets bear numbers divisible by 10.
Find the probability distribution of the number of sixes in three tosses of a die.
Three cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the mean and variance of number of red cards.
A coin is tossed 5 times. If X is the number of heads observed, find the probability distribution of X.
A card is drawn and replaced in an ordinary pack of 52 cards. How many times must a card be drawn so that (i) there is at least an even chance of drawing a heart (ii) the probability of drawing a heart is greater than 3/4?
An unbiased coin is tossed 8 times. Find, by using binomial distribution, the probability of getting at least 6 heads.
Assume that the probability that a bomb dropped from an aeroplane will strike a certain target is 0.2. If 6 bombs are dropped, find the probability that exactly 2 will strike the target .
Assume that the probability that a bomb dropped from an aeroplane will strike a certain target is 0.2. If 6 bombs are dropped, find the probability that at least 2 will strike the target
Suppose X has a binomial distribution with n = 6 and \[p = \frac{1}{2} .\] Show that X = 3 is the most likely outcome.
How many times must a man toss a fair coin so that the probability of having at least one head is more than 90% ?
How many times must a man toss a fair coin so that the probability of having at least one head is more than 80% ?
A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability distribution of the number of successes.
Find the expected number of boys in a family with 8 children, assuming the sex distribution to be equally probable.
If a random variable X follows a binomial distribution with mean 3 and variance 3/2, find P (X ≤ 5).
If the mean of a binomial distribution is 20 and its standard deviation is 4, find p.
The mean of a binomial distribution is 10 and its standard deviation is 2; write the value of q.
If in a binomial distribution n = 4 and P (X = 0) = \[\frac{16}{81}\] , find q.
If X follows binomial distribution with parameters n = 5, p and P(X = 2) = 9P(X = 3), then find the value of p.
If in a binomial distribution n = 4, P (X = 0) = \[\frac{16}{81}\], then P (X = 4) equals
A fair coin is tossed 100 times. The probability of getting tails an odd number of times is
If X is a binomial variate with parameters n and p, where 0 < p < 1 such that \[\frac{P\left( X = r \right)}{P\left( X = n - r \right)}\text{ is } \] independent of n and r, then p equals
A fair die is tossed eight times. The probability that a third six is observed in the eighth throw is
Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that only 3 cards are spades ?
Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that none is a spade ?
Which one is not a requirement of a binomial distribution?
If in the binomial expansion of (1 + x)n where n is a natural number, the coefficients of the 5th, 6th and 7th terms are in A.P., then n is equal to:
An ordinary dice is rolled for a certain number of times. If the probability of getting an odd number 2 times is equal to the probability of getting an even number 3 times, then the probability of getting an odd number for odd number of times is ______.
The probability of hitting a target in any shot is 0.2. If 5 shots are fired, find the probability that the target will be hit at least twice.