हिंदी

If in a Binomial Distribution N = 4 and P (X = 0) = 16 81 , Find Q. - Mathematics

Advertisements
Advertisements

प्रश्न

If in a binomial distribution n = 4 and P (X = 0) = \[\frac{16}{81}\] , find q.

 
 
टिप्पणी लिखिए

उत्तर

In the given binomial distribution, = 4 and

\[P(X = 0) = \frac{16}{81} \]
\[\text{ Binomial distribution is given by} \]
\[P(X = 0) = ^ {4}{}{C}_0\ p^0 q^{4 - 0} = q^4 \]
\[\text{ We know that } P(X = 0) = \frac{16}{81} \]
\[ \therefore q^4 = \frac{16}{81}\]
\[ \Rightarrow q^4 = \left( \frac{2}{3} \right)^4 \]
\[ \Rightarrow q = \frac{2}{3}\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 33: Binomial Distribution - Very Short Answers [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 33 Binomial Distribution
Very Short Answers | Q 8 | पृष्ठ २७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

The probability that a bomb will hit a target is 0.8. Find the probability that out of 10 bombs dropped, exactly 4 will hit the target.


A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of two successes.


A bag consists of 10 balls each marked with one of the digits 0 to 9. If four balls are drawn successively with replacement from the bag, what is the probability that none is marked with the digit 0?


In an examination, 20 questions of true-false type are asked. Suppose a student tosses a fair coin to determine his answer to each question. If the coin falls heads, he answers ‘true’; if it falls tails, he answers ‘false’. Find the probability that he answers at least 12 questions correctly.


A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is 1/100. What is the probability that he will in a prize (a) at least once (b) exactly once (c) at least twice?


Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that all the five cards are spades ?



Find the probability distribution of the number of doublets in 4 throws of a pair of dice.

 

Find the probability distribution of the number of sixes in three tosses of a die.

 

It is known that 60% of mice inoculated with a serum are protected from a certain disease. If 5 mice are inoculated, find the probability that none contract the disease .


An experiment succeeds twice as often as it fails. Find the probability that in the next 6 trials there will be at least 4 successes.

 

The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university only one will graduate .


Ten eggs are drawn successively, with replacement, from a lot containing 10% defective eggs. Find the probability that there is at least one defective egg.


Suppose X has a binomial distribution with = 6 and \[p = \frac{1}{2} .\]  Show that X = 3 is the most likely outcome.

 
 

In a multiple-choice examination with three possible answers for each of the five questions out of which only one is correct, what is the probability that a candidate would get four or more correct answers just by guessing?


A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is `1/100`. What is the probability that he will win a prize at least once. 


A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is \[\frac{1}{100} .\]  What is the probability that he will win a prize at least twice.


How many times must a man toss a fair coin so that the probability of having at least one head is more than 90% ?


From a lot of 30 bulbs that includes 6 defective bulbs, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.


A box has 20 pens of which 2 are defective. Calculate the probability that out of 5 pens drawn one by one with replacement, at most 2 are defective.


The mean and variance of a binomial variate with parameters n and p are 16 and 8, respectively. Find P (X = 0), P (X = 1) and P (X ≥ 2).

 

If in a binomial distribution mean is 5 and variance is 4, write the number of trials.

 

If the mean of a binomial distribution is 20 and its standard deviation is 4, find p.

 

If the mean and variance of a binomial variate X are 2 and 1 respectively, find P (X > 1).

 

A rifleman is firing at a distant target and has only 10% chance of hitting it. The least number of rounds he must fire in order to have more than 50% chance of hitting it at least once is


A fair coin is tossed 100 times. The probability of getting tails an odd number of times is


A fair die is thrown twenty times. The probability that on the tenth throw the fourth six appears is


Fifteen coupons are numbered 1 to 15. Seven coupons are selected at random one at a time with replacement. The probability that the largest number appearing on a selected coupon is 9 is


A coin is tossed 10 times. The probability of getting exactly six heads is


Mark the correct alternative in the following question:
A box contains 100 pens of which 10 are defective. What is the probability that out of a sample of 5 pens drawn one by one with replacement at most one is defective?


Mark the correct alternative in the following question:
Suppose a random variable X follows the binomial distribution with parameters n and p, where 0 < p < 1. If \[\frac{P\left( X = r \right)}{P\left( X = n - r \right)}\] is independent of n and r, then p equals


Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that  none is a spade ?


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs at least one will fuse after 150 days of use 


 Determine the binomial distribution where mean is 9 and standard deviation is `3/2` Also, find the probability of obtaining at most one success. 


Find the mean and variance of the random variable X which denotes the number of doublets in four throws of a pair of dice.


The mean, median and mode for binomial distribution will be equal when


If x4 occurs in the tth term in the expansion of `(x^4 + 1/x^3)^15`, then the value oft is equal to:


An ordinary dice is rolled for a certain number of times. If the probability of getting an odd number 2 times is equal to the probability of getting an even number 3 times, then the probability of getting an odd number for odd number of times is ______.


If the sum of mean and variance of a binomial distribution is `25/9` for 5 trials, find p.


If X ∼ B(n, p), n = 6 and 9 P(X = 4) = P(X = 2), then find the value of p.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×