हिंदी

A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is 1100. What is the probability that he will win a prize at least once. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is `1/100`. What is the probability that he will win a prize at least once. 

योग

उत्तर

Let X = number of winning prizes.

p = probability of winning a prize

∴ p = `1/100`

and q = 1 − p = 1 − `1/100` = `99/100`

Given: n = 50

∴ X ~ B `(50, 1/100)`

The p.m.f. of X is given by P(X = x) = `""^nC_x  p^x  q^(n - x)`

i.e. p(x) = `""^50C_x (1/100)^x(99/100)^(50-x), x = 0, 1, 2, ...50`

P(a person wins a prize at least once)

= P[X ≥ 1] = 1 − P[X < 1] = 1 − p(0)

= 1 − `""^50C_0 (1/100)^0 (99/100)^(50-0)`

= 1 − 1 × 1 × `(99/100)^50`

= 1 − `(99/100)^50`

Hence, probability of winning a prize at least once

= 1 − `(99/100)^50`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Binomial Distribution - Exercise 8.1 [पृष्ठ २५२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 8 Binomial Distribution
Exercise 8.1 | Q 8.1 | पृष्ठ २५२
आरडी शर्मा Mathematics [English] Class 12
अध्याय 33 Binomial Distribution
Exercise 33.1 | Q 44.1 | पृष्ठ १५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

A fair coin is tossed 8 times. Find the probability that it shows heads at least once


The probability that a bomb will hit a target is 0.8. Find the probability that out of 10 bombs dropped, exactly 4 will hit the target.


Given X ~ B (n, p)
If n = 10 and p = 0.4, find E(X) and var (X).


A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of two successes.


There are 5% defective items in a large bulk of items. What is the probability that a sample of 10 items will include not more than one defective item?


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. What is the probability that out of 5 such bulbs
(i) none
(ii) not more than one
(iii) more than one
(iv) at least one, will fuse after 150 days of use.


A bag consists of 10 balls each marked with one of the digits 0 to 9. If four balls are drawn successively with replacement from the bag, what is the probability that none is marked with the digit 0?


Suppose X has a binomial distribution `B(6, 1/2)`. Show that X = 3 is the most likely outcome.

(Hint: P(X = 3) is the maximum among all P (xi), xi = 0, 1, 2, 3, 4, 5, 6)


A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is 1/100. What is the probability that he will in a prize (a) at least once (b) exactly once (c) at least twice?


Find the probability of throwing at most 2 sixes in 6 throws of a single die.


It is known that 10% of certain articles manufactured are defective. What is the probability that in a random sample of 12 such articles, 9 are defective?


In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs, none is defective is

(A) 10−1

(B) `(1/2)^5`

(C) `(9/10)^5`

(D) 9/10


A couple has two children, Find the probability that both children are females, if it is known that the elder child is a female.


An experiment succeeds twice as often as it fails. Find the probability that in the next six trials, there will be at least 4 successes.


A fair coin is tossed 8 times. Find the probability that it shows heads exactly 5 times.


A fair coin is tossed 9 times. Find the probability that it shows head exactly 5 times.


The probability of a man hitting a target is 1/4. If he fires 7 times, what is the probability of his hitting the target at least twice?


A bag contains 10 balls, each marked with one of the digits from 0 to 9. If four balls are drawn successively with replacement from the bag, what is the probability that none is marked with the digit 0?


In a large bulk of items, 5 percent of the items are defective. What is the probability that a sample of 10 items will include not more than one defective item?

 

The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs none will fuse after 150 days of use 


Suppose that 90% of people are right-handed. What is the probability that at most 6 of a random sample of 10 people are right-handed?


Find the probability distribution of the number of sixes in three tosses of a die.

 

An unbiased die is thrown twice. A success is getting a number greater than 4. Find the probability distribution of the number of successes.

 

A man wins a rupee for head and loses a rupee for tail when a coin is tossed. Suppose that he tosses once and quits if he wins but tries once more if he loses on the first toss. Find the probability distribution of the number of rupees the man wins.


Five dice are thrown simultaneously. If the occurrence of 3, 4 or 5 in a single die is considered a success, find the probability of at least 3 successes.


A card is drawn and replaced in an ordinary pack of 52 cards. How many times must a card be drawn so that (i) there is at least an even chance of drawing a heart (ii) the probability of drawing a heart is greater than 3/4?


The mathematics department has 8 graduate assistants who are assigned to the same office. Each assistant is just as likely to study at home as in office. How many desks must there be in the office so that each assistant has a desk at least 90% of the time?


An unbiased coin is tossed 8 times. Find, by using binomial distribution, the probability of getting at least 6 heads.

 

Six coins are tossed simultaneously. Find the probability of getting
(i) 3 heads
(ii) no heads
(iii) at least one head


Suppose that a radio tube inserted into a certain type of set has probability 0.2 of functioning more than 500 hours. If we test 4 tubes at random what is the probability that exactly three of these tubes function for more than 500 hours?


The probability that a certain kind of component will survive a given shock test is \[\frac{3}{4} .\]  Find the probability that among 5 components tested at most 3 will survive .

 

Assume that the probability that a bomb dropped from an aeroplane will strike a certain target is 0.2. If 6 bombs are dropped, find the probability that exactly 2 will strike the target .


Assume that the probability that a bomb dropped from an aeroplane will strike a certain target is 0.2. If 6 bombs are dropped, find the probability that at least 2 will strike the target

 

It is known that 60% of mice inoculated with a serum are protected from a certain disease. If 5 mice are inoculated, find the probability that none contract the disease .


The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university none will graduate 


The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university only one will graduate .


Ten eggs are drawn successively, with replacement, from a lot containing 10% defective eggs. Find the probability that there is at least one defective egg.


In a 20-question true-false examination, suppose a student tosses a fair coin to determine his answer to each question. For every head, he answers 'true' and for every tail, he answers 'false'. Find the probability that he answers at least 12 questions correctly.


A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is \[\frac{1}{100} .\]  What is the probability that he will win a prize exactly once.


A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is \[\frac{1}{100} .\]  What is the probability that he will win a prize at least twice.


The probability of a shooter hitting a target is \[\frac{3}{4} .\] How many minimum number of times must he/she fire so that the probability of hitting the target at least once is more than 0.99?

 

How many times must a man toss a fair coin so that the probability of having at least one head is more than 80% ?


A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability distribution of the number of successes.


From a lot of 30 bulbs that includes 6 defective bulbs, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.


Find the probability that in 10 throws of a fair die, a score which is a multiple of 3 will be obtained in at least 8 of the throws. 


A die is thrown 5 times. Find the probability that an odd number will come up exactly three times. 


If the mean and variance of a binomial distribution are respectively 9 and 6, find the distribution.


Find the binomial distribution when the sum of its mean and variance for 5 trials is 4.8.

 

Determine the binomial distribution whose mean is 20 and variance 16.

 

In a binomial distribution the sum and product of the mean and the variance are \[\frac{25}{3}\] and \[\frac{50}{3}\]

 respectively. Find the distribution.

 
 

The mean of a binomial distribution is 20 and the standard deviation 4. Calculate the parameters of the binomial distribution.


If the probability of a defective bolt is 0.1, find the (i) mean and (ii) standard deviation for the distribution of bolts in a total of 400 bolts.


Find the binomial distribution whose mean is 5 and variance \[\frac{10}{3} .\]

 

If on an average 9 ships out of 10 arrive safely at ports, find the mean and S.D. of the ships returning safely out of a total of 500 ships.


The mean and variance of a binomial variate with parameters n and p are 16 and 8, respectively. Find P (X = 0), P (X = 1) and P (X ≥ 2).

 

In eight throws of a die, 5 or 6 is considered a success. Find the mean number of successes and the standard deviation.


Find the expected number of boys in a family with 8 children, assuming the sex distribution to be equally probable.


If a random variable X follows a binomial distribution with mean 3 and variance 3/2, find P (X ≤ 5).


If X follows a binomial distribution with mean 4 and variance 2, find P (X ≥ 5).

 

A die is thrown three times. Let X be 'the number of twos seen'. Find the expectation of X.    


In a binomial distribution, if n = 20 and q = 0.75, then write its mean.

 

If in a binomial distribution mean is 5 and variance is 4, write the number of trials.

 

In a group of 200 items, if the probability of getting a defective item is 0.2, write the mean of the distribution.


The mean of a binomial distribution is 10 and its standard deviation is 2; write the value of q.

 

If the mean and variance of a binomial variate X are 2 and 1 respectively, find P (X > 1).

 

If in a binomial distribution n = 4 and P (X = 0) = \[\frac{16}{81}\] , find q.

 
 

If for a binomial distribution P (X = 1) = P (X = 2) = α, write P (X = 4) in terms of α.

 

An unbiased coin is tossed 4 times. Find the mean and variance of the number of heads obtained.   


If X follows binomial distribution with parameters n = 5, p and P(X = 2) = 9P(X = 3), then find the value of p.  


A rifleman is firing at a distant target and has only 10% chance of hitting it. The least number of rounds he must fire in order to have more than 50% chance of hitting it at least once is


If X is a binomial variate with parameters n and p, where 0 < p < 1 such that \[\frac{P\left( X = r \right)}{P\left( X = n - r \right)}\text{ is } \] independent of n and r, then p equals 


Let X denote the number of times heads occur in n tosses of a fair coin. If P (X = 4), P (X= 5) and P (X = 6) are in AP, the value of n is 


A fair coin is tossed 99 times. If X is the number of times head appears, then P (X = r) is maximum when r is


If the mean and variance of a binomial variate X are 2 and 1 respectively, then the probability that X takes a value greater than 1 is


A biased coin with probability p, 0 < p < 1, of heads is tossed until a head appears for the first time. If the probability that the number of tosses required is even is 2/5, then p equals


If X follows a binomial distribution with parameters n = 8 and p = 1/2, then P (|X − 4| ≤ 2) equals


If X follows a binomial distribution with parameters n = 100 and p = 1/3, then P (X = r) is maximum when r =


A fair die is tossed eight times. The probability that a third six is observed in the eighth throw is


Fifteen coupons are numbered 1 to 15. Seven coupons are selected at random one at a time with replacement. The probability that the largest number appearing on a selected coupon is 9 is


If the mean and variance of a binomial distribution are 4 and 3, respectively, the probability of getting exactly six successes in this distribution is


A coin is tossed n times. The probability of getting at least once is greater than 0.8. Then, the least value of n, is


The probability of selecting a male or a female is same. If the probability that in an office of n persons (n − 1) males being selected is  \[\frac{3}{2^{10}}\] , the value of n is

 


Mark the correct alternative in the following question:
A box contains 100 pens of which 10 are defective. What is the probability that out of a sample of 5 pens drawn one by one with replacement at most one is defective?


Mark the correct alternative in the following question:
The probability that a person is not a swimmer is 0.3. The probability that out of 5 persons 4 are swimmers is


Mark the correct alternative in the following question:

Which one is not a requirement of a binomial dstribution?


Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that  only 3 cards are spades ? 


A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that all are white ? 


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs more than one will fuse after 150 days of use 


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs at least one will fuse after 150 days of use 


 Determine the binomial distribution where mean is 9 and standard deviation is `3/2` Also, find the probability of obtaining at most one success. 


For Bernoulli Distribution, state formula for E(X) and V(X).


Which one is not a requirement of a binomial distribution?


Suppose a random variable X follows the binomial distribution with parameters n and p, where 0 < p < 1. If P(x = r)/P(x = n – r) is independent of n and r, then p equals ______.


If X follows binomial distribution with parameters n = 5, p and P(X = 2) = 9, P(X = 3), then p = ______.


The mean, median and mode for binomial distribution will be equal when


The sum of n terms of the series `1 + 2(1 + 1/n) + 3(1 + 1/n)^2 + ...` is


If x4 occurs in the tth term in the expansion of `(x^4 + 1/x^3)^15`, then the value oft is equal to:


In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs, none is defective is:-


A pair of dice is thrown four times. If getting a doublet is considered a success then find the probability of two success.


The mean and variance of a binomial distribution are α and `α/3` respectively. If P(X = 1) = `4/243`, then P(X = 4 or 5) is equal to ______.


A fair coin is tossed 8 times. Find the probability that it shows heads at most once.


If the sum of mean and variance of a binomial distribution is `25/9` for 5 trials, find p.


If X ∼ B(n, p), n = 6 and 9 P(X = 4) = P(X = 2), then find the value of p.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×