हिंदी

A Die is Thrown 5 Times. Find the Probability that an Odd Number Will Come up Exactly Three Times. - Mathematics

Advertisements
Advertisements

प्रश्न

A die is thrown 5 times. Find the probability that an odd number will come up exactly three times. 

योग

उत्तर

Let getting an odd number be a success in a trial.
We have,

\[p = \text{ probability of getting an odd number in a trial } = \frac{3}{6} = \frac{1}{2}\]
\[\text{ Also } , q = 1 - p = 1 - \frac{1}{2} = \frac{1}{2}\]
\[\text{ Let X denote the number of success in a sample of 5 trials . Then,}  \]
\[\text{ X follows binomial distribution with parameters n = 5 and } p = q = \frac{1}{2}\]
\[ \therefore P\left( X = r \right) = ^{5}{}{C}_r p^r q^\left( 5 - r \right) = ^{5}{}{C}_r \left( \frac{1}{2} \right)^r \left( \frac{1}{2} \right)^\left( 5 - r \right) = ^{5}{}{C}_r \left( \frac{1}{2} \right)^5 , \text{where}  r = 0, 1, 2, 3, 4, 5\]
\[\text{ Now,}  \]
\[\text{ Required probability}  = P\left( X = 3 \right)\]
\[ = ^{5}{}{C}_3 \left( \frac{1}{2} \right)^5 \]
\[ = \frac{10}{32}\]
\[ = \frac{5}{16}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 33: Binomial Distribution - Exercise 33.1 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 33 Binomial Distribution
Exercise 33.1 | Q 51 | पृष्ठ १५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

A fair coin is tossed 8 times. Find the probability that it shows heads at least once


The probability that a bomb will hit a target is 0.8. Find the probability that out of 10 bombs dropped, exactly 4 will hit the target.


Given X ~ B (n, p)
If n = 10 and p = 0.4, find E(X) and var (X).


Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards. What is the probability that

  1. all the five cards are spades?
  2. only 3 cards are spades?
  3. none is a spade?

The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. What is the probability that out of 5 such bulbs
(i) none
(ii) not more than one
(iii) more than one
(iv) at least one, will fuse after 150 days of use.


In an examination, 20 questions of true-false type are asked. Suppose a student tosses a fair coin to determine his answer to each question. If the coin falls heads, he answers ‘true’; if it falls tails, he answers ‘false’. Find the probability that he answers at least 12 questions correctly.


Find the probability of getting 5 exactly twice in 7 throws of a die.


It is known that 10% of certain articles manufactured are defective. What is the probability that in a random sample of 12 such articles, 9 are defective?


A couple has two children, Find the probability that both children are females, if it is known that the elder child is a female.


The probability that a student is not a swimmer is 1/5 . Then the probability that out of five students, four are swimmers is

(A) `""^5C_4 (4/5)^4 1/5`

(B) `(4/5)^4 1/5

(C) `""^5C_1 1/5 (4/5)^4 `

(D) None of these


If getting 5 or 6 in a throw of an unbiased die is a success and the random variable X denotes the number of successes in six throws of the die, find P (X ≥ 4).

 

A bag contains 10 balls, each marked with one of the digits from 0 to 9. If four balls are drawn successively with replacement from the bag, what is the probability that none is marked with the digit 0?


An unbiased coin is tossed 8 times. Find, by using binomial distribution, the probability of getting at least 6 heads.

 

The probability that a certain kind of component will survive a given shock test is \[\frac{3}{4} .\]  Find the probability that among 5 components tested at most 3 will survive .

 

The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university only one will graduate .


The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university all will graduate .

 

In a multiple-choice examination with three possible answers for each of the five questions out of which only one is correct, what is the probability that a candidate would get four or more correct answers just by guessing?


A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability distribution of the number of successes.


A box has 20 pens of which 2 are defective. Calculate the probability that out of 5 pens drawn one by one with replacement, at most 2 are defective.


Can the mean of a binomial distribution be less than its variance?

 

The mean and variance of a binomial variate with parameters n and p are 16 and 8, respectively. Find P (X = 0), P (X = 1) and P (X ≥ 2).

 

The probability that an item produced by a factory is defective is 0.02. A shipment of 10,000 items is sent to its warehouse. Find the expected number of defective items and the standard deviation.


If X follows a binomial distribution with mean 4 and variance 2, find P (X ≥ 5).

 

In a binomial distribution, if n = 20 and q = 0.75, then write its mean.

 

In a group of 200 items, if the probability of getting a defective item is 0.2, write the mean of the distribution.


If the mean and variance of a random variable X with a binomial distribution are 4 and 2 respectively, find P (X = 1).

 

If X follows binomial distribution with parameters n = 5, p and P(X = 2) = 9P(X = 3), then find the value of p.  


A fair coin is tossed a fixed number of times. If the probability of getting seven heads is equal to that of getting nine heads, the probability of getting two heads is


A coin is tossed 10 times. The probability of getting exactly six heads is


The probability of selecting a male or a female is same. If the probability that in an office of n persons (n − 1) males being selected is  \[\frac{3}{2^{10}}\] , the value of n is

 


Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that  only 3 cards are spades ? 


A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that all are white ? 


One of the condition of Bernoulli trials is that the trials are independent of each other.


A pair of dice is thrown four times. If getting a doublet is considered a success then find the probability of two success.


If a fair coin is tossed 10 times. Find the probability of getting at most six heads.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×