हिंदी

The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. What is the probability that out of 5 such bulbs(i) none(ii) not more than one(iii) more than one - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. What is the probability that out of 5 such bulbs
(i) none
(ii) not more than one
(iii) more than one
(iv) at least one, will fuse after 150 days of use.

योग

उत्तर

Let X = number of fuse bulbs.

p = probability of a bulb produced by a factory will fuse after 150 days of use.

∴ p = 0.05 and q = 1 – p = 1 – 0.05 = 0.95

X has a binomial distribution with n = 5 and p = 0.05

∴ X ~ B(5, 0.05)

The p.m.f. of X is given by

P(X = x) = nCx px qn−x

i.e., p(x) = 5Cx (0.05)x (0.95)5−x, x = 0, 1, 2, 3, 4, 5

(i) P(none) = P[X = 0]

= p(0)

= 5C0 (0.05)0 (0.95)5 - 0

= 1 × 1 × (0.95)5

= (0.95)5 

Hence, the probability that none of the bulbs will fuse after 150 days = (0.95)5.

(ii) P(not more than one) = P(X ≤ 1)

= p(0) + p(1)

= 5C0 (0.05)0 (0.95)5 - 0 + 5C1 (0.05)1 (0.95)5 - 1

= 5C0 (0.05)0 (0.95)5 + 5C1 (0.05)1 (0.95)4

= 1 × 1 × (0.95)+ 5 × (0.05) × (0.95)4

= (0.95)4 [0.95 + 5(0.05)]

= (0.95)4 [0.95 + 0.25]

= (0.95)4 (1.20)

= (1.2)(0.95)4

Hence, the probability that not more than one bulb will fuse after 150 days = (1.2)(0.95)4

(iii) P (more than 1) = P(X > 1)

= 1 - P[X ≤ 1]

= 1 - (1.2)(0.95)4 

Hence, the probability that more than one bulb fuse after 150 days = 1 – (1.2)(0.95)4.

(iv) P (at least one) = P(X ≥ 1)

= 1 - P[X = 0]

= 1 - p(0)

= 1 - 5C0 (0.05)0 (0.95)5 - 0

= 1 - 1 × 1 × (0.95)5

= 1 - (0.95)5 

Hence, the probability that at least one bulb fuses after 150 days = 1 - (0.95)5.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Binomial Distribution - Exercise 8.1 [पृष्ठ २५१]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 8 Binomial Distribution
Exercise 8.1 | Q 5 | पृष्ठ २५१
एनसीईआरटी Mathematics [English] Class 12
अध्याय 13 Probability
Exercise 13.5 | Q 5 | पृष्ठ ५७७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Given that X ~ B(n= 10, p). If E(X) = 8 then the value of

p is ...........

(a) 0.6

(b) 0.7

(c) 0.8

(d) 0.4


Given X ~ B (n, p)
If n = 10 and p = 0.4, find E(X) and var (X).


A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of two successes.


There are 5% defective items in a large bulk of items. What is the probability that a sample of 10 items will include not more than one defective item?


A bag consists of 10 balls each marked with one of the digits 0 to 9. If four balls are drawn successively with replacement from the bag, what is the probability that none is marked with the digit 0?


On a multiple choice examination with three possible answers for each of the five questions, what is the probability that a candidate would get four or more correct answers just by guessing?


A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is 1/100. What is the probability that he will in a prize (a) at least once (b) exactly once (c) at least twice?


In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs, none is defective is

(A) 10−1

(B) `(1/2)^5`

(C) `(9/10)^5`

(D) 9/10


In a hurdle race, a player has to cross 10 hurdles. The probability that he will clear each hurdle is 5/6 . What is the probability that he will knock down fewer than 2 hurdles?


The probability of a man hitting a target is 1/4. If he fires 7 times, what is the probability of his hitting the target at least twice?


Assume that on an average one telephone number out of 15 called between 2 P.M. and 3 P.M. on week days is busy. What is the probability that if six randomly selected telephone numbers are called, at least 3 of them will be busy?


Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that all the five cards are spades ?



A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that none is white ?


A box contains 100 tickets, each bearing one of the numbers from 1 to 100. If 5 tickets are drawn successively with replacement from the box, find the probability that all the tickets bear numbers divisible by 10.


A bag contains 10 balls, each marked with one of the digits from 0 to 9. If four balls are drawn successively with replacement from the bag, what is the probability that none is marked with the digit 0?


In a large bulk of items, 5 percent of the items are defective. What is the probability that a sample of 10 items will include not more than one defective item?

 

A bag contains 7 green, 4 white and 5 red balls. If four balls are drawn one by one with replacement, what is the probability that one is red?


Three cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the mean and variance of number of red cards. 


A coin is tossed 5 times. If X is the number of heads observed, find the probability distribution of X.

 

A man wins a rupee for head and loses a rupee for tail when a coin is tossed. Suppose that he tosses once and quits if he wins but tries once more if he loses on the first toss. Find the probability distribution of the number of rupees the man wins.


The items produced by a company contain 10% defective items. Show that the probability of getting 2 defective items in a sample of 8 items is

\[\frac{28 \times 9^6}{{10}^8} .\]

 


An unbiased coin is tossed 8 times. Find, by using binomial distribution, the probability of getting at least 6 heads.

 

Suppose that a radio tube inserted into a certain type of set has probability 0.2 of functioning more than 500 hours. If we test 4 tubes at random what is the probability that exactly three of these tubes function for more than 500 hours?


The probability that a certain kind of component will survive a given shock test is \[\frac{3}{4} .\]  Find the probability that among 5 components tested at most 3 will survive .

 

Assume that the probability that a bomb dropped from an aeroplane will strike a certain target is 0.2. If 6 bombs are dropped, find the probability that at least 2 will strike the target

 

It is known that 60% of mice inoculated with a serum are protected from a certain disease. If 5 mice are inoculated, find the probability that more than 3 contract the disease .

 

The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university none will graduate 


In a 20-question true-false examination, suppose a student tosses a fair coin to determine his answer to each question. For every head, he answers 'true' and for every tail, he answers 'false'. Find the probability that he answers at least 12 questions correctly.


Suppose X has a binomial distribution with = 6 and \[p = \frac{1}{2} .\]  Show that X = 3 is the most likely outcome.

 
 

In a multiple-choice examination with three possible answers for each of the five questions out of which only one is correct, what is the probability that a candidate would get four or more correct answers just by guessing?


A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is \[\frac{1}{100} .\]  What is the probability that he will win a prize exactly once.


A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is \[\frac{1}{100} .\]  What is the probability that he will win a prize at least twice.


How many times must a man toss a fair coin so that the probability of having at least one head is more than 80% ?


From a lot of 30 bulbs that includes 6 defective bulbs, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.


The probability of a man hitting a target is 0.25. He shoots 7 times. What is the probability of his hitting at least twice?


A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that exactly two bulbs are defective


A box has 20 pens of which 2 are defective. Calculate the probability that out of 5 pens drawn one by one with replacement, at most 2 are defective.


If the mean and variance of a binomial distribution are respectively 9 and 6, find the distribution.


Find the binomial distribution when the sum of its mean and variance for 5 trials is 4.8.

 

Determine the binomial distribution whose mean is 20 and variance 16.

 

If the probability of a defective bolt is 0.1, find the (i) mean and (ii) standard deviation for the distribution of bolts in a total of 400 bolts.


Find the binomial distribution whose mean is 5 and variance \[\frac{10}{3} .\]

 

If on an average 9 ships out of 10 arrive safely at ports, find the mean and S.D. of the ships returning safely out of a total of 500 ships.


In eight throws of a die, 5 or 6 is considered a success. Find the mean number of successes and the standard deviation.


Find the expected number of boys in a family with 8 children, assuming the sex distribution to be equally probable.


A dice is thrown thrice. A success is 1 or 6 in a throw. Find the mean and variance of the number of successes.


If X follows a binomial distribution with mean 4 and variance 2, find P (X ≥ 5).

 

A die is thrown three times. Let X be 'the number of twos seen'. Find the expectation of X.    


In a binomial distribution, if n = 20 and q = 0.75, then write its mean.

 

In a group of 200 items, if the probability of getting a defective item is 0.2, write the mean of the distribution.


If the mean of a binomial distribution is 20 and its standard deviation is 4, find p.

 

The mean of a binomial distribution is 10 and its standard deviation is 2; write the value of q.

 

If the mean and variance of a binomial distribution are 4 and 3, respectively, find the probability of no success.


If for a binomial distribution P (X = 1) = P (X = 2) = α, write P (X = 4) in terms of α.

 

If X follows binomial distribution with parameters n = 5, p and P(X = 2) = 9P(X = 3), then find the value of p.  


If in a binomial distribution n = 4, P (X = 0) = \[\frac{16}{81}\], then P (X = 4) equals

 


A fair coin is tossed 100 times. The probability of getting tails an odd number of times is


One hundred identical coins, each with probability p of showing heads are tossed once. If 0 < p < 1 and the probability of heads showing on 50 coins is equal to that of heads showing on 51 coins, the value of p is


A fair coin is tossed 99 times. If X is the number of times head appears, then P (X = r) is maximum when r is


If the mean and variance of a binomial variate X are 2 and 1 respectively, then the probability that X takes a value greater than 1 is


A biased coin with probability p, 0 < p < 1, of heads is tossed until a head appears for the first time. If the probability that the number of tosses required is even is 2/5, then p equals


If X follows a binomial distribution with parameters n = 8 and p = 1/2, then P (|X − 4| ≤ 2) equals


If X follows a binomial distribution with parameters n = 100 and p = 1/3, then P (X = r) is maximum when r =


Fifteen coupons are numbered 1 to 15. Seven coupons are selected at random one at a time with replacement. The probability that the largest number appearing on a selected coupon is 9 is


A coin is tossed 10 times. The probability of getting exactly six heads is


If the mean and variance of a binomial distribution are 4 and 3, respectively, the probability of getting exactly six successes in this distribution is


In a binomial distribution, the probability of getting success is 1/4 and standard deviation is 3. Then, its mean is


A coin is tossed 4 times. The probability that at least one head turns up is


A coin is tossed n times. The probability of getting at least once is greater than 0.8. Then, the least value of n, is


Mark the correct alternative in the following question:
A box contains 100 pens of which 10 are defective. What is the probability that out of a sample of 5 pens drawn one by one with replacement at most one is defective?


Mark the correct alternative in the following question:
The probability that a person is not a swimmer is 0.3. The probability that out of 5 persons 4 are swimmers is


Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that  only 3 cards are spades ? 


A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that all are white ? 


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs not more than one will fuse after 150 days of use 


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs more than one will fuse after 150 days of use 


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs at least one will fuse after 150 days of use 


Find the mean and variance of the random variable X which denotes the number of doublets in four throws of a pair of dice.


In a multiple-choice examination with three possible answers for each of the five questions, what is the probability that a candidate would get four or more correct answers just by guessing?

Bernoulli distribution is a particular case of binomial distribution if n = ______


If the coefficients of x7 and x8 in `(2 + x/3)^n` are equal, then n is


If in the binomial expansion of (1 + x)n where n is a natural number, the coefficients of the 5th, 6th and 7th terms are in A.P., then n is equal to:


In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs, none is defective is:-


If a fair coin is tossed 10 times. Find the probability of getting at most six heads.


An ordinary dice is rolled for a certain number of times. If the probability of getting an odd number 2 times is equal to the probability of getting an even number 3 times, then the probability of getting an odd number for odd number of times is ______.


The mean and variance of a binomial distribution are α and `α/3` respectively. If P(X = 1) = `4/243`, then P(X = 4 or 5) is equal to ______.


The probability of hitting a target in any shot is 0.2. If 5 shots are fired, find the probability that the target will be hit at least twice.


In three throws with a pair of dice find the chance of throwing doublets at least twice.


If the sum of mean and variance of a binomial distribution is `25/9` for 5 trials, find p.


If X ∼ B(n, p), n = 6 and 9 P(X = 4) = P(X = 2), then find the value of p.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×