हिंदी

The Probability that a Bulb Produced by a Factory Will Fuse After 150 Days of Use is 0.05. Find the Probability that Out of 5 Such Bulbs More than One Will Fuse After 150 Days of Use - Mathematics

Advertisements
Advertisements

प्रश्न

The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs more than one will fuse after 150 days of use 

योग

उत्तर

Let be the number of bulbs that fuse after 150 days.
X follows a binomial distribution with n = 5,

\[p = 0 . 05 \text{ and }  q = 0 . 95\]

\[\text{ Or } p = \frac{1}{20}\text{ and } q = \frac{19}{20}\]

\[P(X = r) = ^{5}{}{C}_r \left( \frac{1}{20} \right)^r \left( \frac{19}{20} \right)^{5 - r} \]

\[ \text{ Probability} \left( \text{ more than one will fuse after 150 days of use }  \right) = P(X > 1) \]
\[ = 1 - P(X \leq 1)\]
\[ = 1 - \frac{6}{5} \left( \frac{19}{20} \right)^4 \left\{ \because P(X \leq 1) = \frac{6}{5} \left( \frac{19}{20} \right)^4 \right\} \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 33: Binomial Distribution - Exercise 33.1 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 33 Binomial Distribution
Exercise 33.1 | Q 17.3 | पृष्ठ १३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of two successes.


A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is 1/100. What is the probability that he will in a prize (a) at least once (b) exactly once (c) at least twice?


A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that none is white ?


A bag contains 10 balls, each marked with one of the digits from 0 to 9. If four balls are drawn successively with replacement from the bag, what is the probability that none is marked with the digit 0?


In a large bulk of items, 5 percent of the items are defective. What is the probability that a sample of 10 items will include not more than one defective item?

 

An urn contains four white and three red balls. Find the probability distribution of the number of red balls in three draws with replacement from the urn.


A man wins a rupee for head and loses a rupee for tail when a coin is tossed. Suppose that he tosses once and quits if he wins but tries once more if he loses on the first toss. Find the probability distribution of the number of rupees the man wins.


The items produced by a company contain 10% defective items. Show that the probability of getting 2 defective items in a sample of 8 items is

\[\frac{28 \times 9^6}{{10}^8} .\]

 


A card is drawn and replaced in an ordinary pack of 52 cards. How many times must a card be drawn so that (i) there is at least an even chance of drawing a heart (ii) the probability of drawing a heart is greater than 3/4?


Assume that the probability that a bomb dropped from an aeroplane will strike a certain target is 0.2. If 6 bombs are dropped, find the probability that exactly 2 will strike the target .


An experiment succeeds twice as often as it fails. Find the probability that in the next 6 trials there will be at least 4 successes.

 

The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university none will graduate 


A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is `1/100`. What is the probability that he will win a prize at least once. 


Find the probability that in 10 throws of a fair die, a score which is a multiple of 3 will be obtained in at least 8 of the throws. 


The probability of a man hitting a target is 0.25. He shoots 7 times. What is the probability of his hitting at least twice?


A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that none of the bulbs is defective .

 

Can the mean of a binomial distribution be less than its variance?

 

If on an average 9 ships out of 10 arrive safely at ports, find the mean and S.D. of the ships returning safely out of a total of 500 ships.


Find the expected number of boys in a family with 8 children, assuming the sex distribution to be equally probable.


A dice is thrown thrice. A success is 1 or 6 in a throw. Find the mean and variance of the number of successes.


If a random variable X follows a binomial distribution with mean 3 and variance 3/2, find P (X ≤ 5).


A die is tossed twice. A 'success' is getting an even number on a toss. Find the variance of number of successes.     


If the mean and variance of a random variable X with a binomial distribution are 4 and 2 respectively, find P (X = 1).

 

If the mean and variance of a binomial variate X are 2 and 1 respectively, find P (X > 1).

 

An unbiased coin is tossed 4 times. Find the mean and variance of the number of heads obtained.   


In a box containing 100 bulbs, 10 are defective. What is the probability that out of a sample of 5 bulbs, none is defective?


Let X denote the number of times heads occur in n tosses of a fair coin. If P (X = 4), P (X= 5) and P (X = 6) are in AP, the value of n is 


Fifteen coupons are numbered 1 to 15. Seven coupons are selected at random one at a time with replacement. The probability that the largest number appearing on a selected coupon is 9 is


A coin is tossed 10 times. The probability of getting exactly six heads is


For a binomial variate X, if n = 3 and P (X = 1) = 8 P (X = 3), then p =


A coin is tossed n times. The probability of getting at least once is greater than 0.8. Then, the least value of n, is


Find the mean and variance of the random variable X which denotes the number of doublets in four throws of a pair of dice.


In a multiple-choice examination with three possible answers for each of the five questions, what is the probability that a candidate would get four or more correct answers just by guessing?

If X follows binomial distribution with parameters n = 5, p and P(X = 2) = 9, P(X = 3), then p = ______.


An ordinary dice is rolled for a certain number of times. If the probability of getting an odd number 2 times is equal to the probability of getting an even number 3 times, then the probability of getting an odd number for odd number of times is ______.


The mean and variance of a binomial distribution are α and `α/3` respectively. If P(X = 1) = `4/243`, then P(X = 4 or 5) is equal to ______.


The probability of hitting a target in any shot is 0.2. If 5 shots are fired, find the probability that the target will be hit at least twice.


An experiment succeeds thrice as often as it fails. Then in next five trials, find the probability that there will be two successes.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×