Advertisements
Advertisements
प्रश्न
A coin is tossed n times. The probability of getting at least once is greater than 0.8. Then, the least value of n, is
विकल्प
2
3
4
5
उत्तर
3
Let X be the number of heads. Then X follows a binomial distribution with
\[p = \frac{1}{2}, q = \frac{1}{2}\]
\[\text{ Hence, the distribution is given by } \]
\[P(X = r) =^{n}{}{C}_r \left( \frac{1}{2} \right)^r \left( \frac{1}{2} \right)^{n - r} , r = 0, 1, 2, 3 . . . . . . n\]
\[ \therefore P(X \geq 1) = 1 - P(X = 0) \]
\[ = 1 - \left( \frac{1}{2} \right)^n \geq 0 . 8\]
\[\text{ Or } \ 2^ n \geq \frac{1}{0 . 2}\]
\[ \Rightarrow 2^n \geq 5\]
\[\text{ This is possible only when n } \geq 3 . \]
\[\text{ So, the least value of n must be } 3 . \]
APPEARS IN
संबंधित प्रश्न
A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of two successes.
Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards. What is the probability that
- all the five cards are spades?
- only 3 cards are spades?
- none is a spade?
In an examination, 20 questions of true-false type are asked. Suppose a student tosses a fair coin to determine his answer to each question. If the coin falls heads, he answers ‘true’; if it falls tails, he answers ‘false’. Find the probability that he answers at least 12 questions correctly.
Suppose X has a binomial distribution `B(6, 1/2)`. Show that X = 3 is the most likely outcome.
(Hint: P(X = 3) is the maximum among all P (xi), xi = 0, 1, 2, 3, 4, 5, 6)
Find the probability of getting 5 exactly twice in 7 throws of a die.
It is known that 10% of certain articles manufactured are defective. What is the probability that in a random sample of 12 such articles, 9 are defective?
In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs, none is defective is
(A) 10−1
(B) `(1/2)^5`
(C) `(9/10)^5`
(D) 9/10
The probability that a student is not a swimmer is 1/5 . Then the probability that out of five students, four are swimmers is
(A) `""^5C_4 (4/5)^4 1/5`
(B) `(4/5)^4 1/5
(C) `""^5C_1 1/5 (4/5)^4 `
(D) None of these
Assume that on an average one telephone number out of 15 called between 2 P.M. and 3 P.M. on week days is busy. What is the probability that if six randomly selected telephone numbers are called, at least 3 of them will be busy?
The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs none will fuse after 150 days of use
A bag contains 7 green, 4 white and 5 red balls. If four balls are drawn one by one with replacement, what is the probability that one is red?
Three cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the mean and variance of number of red cards.
Five dice are thrown simultaneously. If the occurrence of 3, 4 or 5 in a single die is considered a success, find the probability of at least 3 successes.
The mathematics department has 8 graduate assistants who are assigned to the same office. Each assistant is just as likely to study at home as in office. How many desks must there be in the office so that each assistant has a desk at least 90% of the time?
An unbiased coin is tossed 8 times. Find, by using binomial distribution, the probability of getting at least 6 heads.
It is known that 60% of mice inoculated with a serum are protected from a certain disease. If 5 mice are inoculated, find the probability that none contract the disease .
In a 20-question true-false examination, suppose a student tosses a fair coin to determine his answer to each question. For every head, he answers 'true' and for every tail, he answers 'false'. Find the probability that he answers at least 12 questions correctly.
The probability of a shooter hitting a target is \[\frac{3}{4} .\] How many minimum number of times must he/she fire so that the probability of hitting the target at least once is more than 0.99?
From a lot of 30 bulbs that includes 6 defective bulbs, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.
A die is thrown 5 times. Find the probability that an odd number will come up exactly three times.
A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that exactly two bulbs are defective
A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that more than 8 bulbs work properly
In a binomial distribution the sum and product of the mean and the variance are \[\frac{25}{3}\] and \[\frac{50}{3}\]
respectively. Find the distribution.
The mean and variance of a binomial variate with parameters n and p are 16 and 8, respectively. Find P (X = 0), P (X = 1) and P (X ≥ 2).
A die is thrown three times. Let X be 'the number of twos seen'. Find the expectation of X.
If the mean and variance of a binomial distribution are 4 and 3, respectively, find the probability of no success.
An unbiased coin is tossed 4 times. Find the mean and variance of the number of heads obtained.
A fair die is thrown twenty times. The probability that on the tenth throw the fourth six appears is
If X follows a binomial distribution with parameters n = 8 and p = 1/2, then P (|X − 4| ≤ 2) equals
A coin is tossed 10 times. The probability of getting exactly six heads is
If the mean and variance of a binomial distribution are 4 and 3, respectively, the probability of getting exactly six successes in this distribution is
Mark the correct alternative in the following question:
A box contains 100 pens of which 10 are defective. What is the probability that out of a sample of 5 pens drawn one by one with replacement at most one is defective?
Mark the correct alternative in the following question:
Suppose a random variable X follows the binomial distribution with parameters n and p, where 0 < p < 1. If \[\frac{P\left( X = r \right)}{P\left( X = n - r \right)}\] is independent of n and r, then p equals
Mark the correct alternative in the following question:
The probability of guessing correctly at least 8 out of 10 answers of a true false type examination is
Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that only 3 cards are spades ?
A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that all are white ?
Bernoulli distribution is a particular case of binomial distribution if n = ______
If a random variable X follows the Binomial distribution B (33, p) such that 3P(X = 0) = P(X = 1), then the value of `(P(X = 15))/(P(X = 18)) - (P(X = 16))/(P(X = 17))` is equal to ______.
An experiment succeeds thrice as often as it fails. Then in next five trials, find the probability that there will be two successes.