Advertisements
Advertisements
प्रश्न
The probability that a student is not a swimmer is 1/5 . Then the probability that out of five students, four are swimmers is
(A) `""^5C_4 (4/5)^4 1/5`
(B) `(4/5)^4 1/5
(C) `""^5C_1 1/5 (4/5)^4 `
(D) None of these
उत्तर
The repeated selection of students who are swimmers are Bernoulli trials. Let X denote the number of students, out of 5 students, who are swimmers.
Probability of students who are not swimmers, q= 1/5
`:. p = 1 - q = 1 - 1/5 = 4/5`
Clearly, X has a binomial distribution with n = 5 and p = 4/5
Therefore, the correct answer is A.
APPEARS IN
संबंधित प्रश्न
Given that X ~ B(n= 10, p). If E(X) = 8 then the value of
p is ...........
(a) 0.6
(b) 0.7
(c) 0.8
(d) 0.4
A fair coin is tossed 8 times. Find the probability that it shows heads at least once
A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is 1/100. What is the probability that he will in a prize (a) at least once (b) exactly once (c) at least twice?
An experiment succeeds twice as often as it fails. Find the probability that in the next six trials, there will be at least 4 successes.
The probability of a man hitting a target is 1/4. If he fires 7 times, what is the probability of his hitting the target at least twice?
Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that all the five cards are spades ?
A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that none is white ?
A bag contains 7 green, 4 white and 5 red balls. If four balls are drawn one by one with replacement, what is the probability that one is red?
Three cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the mean and variance of number of red cards.
The items produced by a company contain 10% defective items. Show that the probability of getting 2 defective items in a sample of 8 items is
\[\frac{28 \times 9^6}{{10}^8} .\]
A card is drawn and replaced in an ordinary pack of 52 cards. How many times must a card be drawn so that (i) there is at least an even chance of drawing a heart (ii) the probability of drawing a heart is greater than 3/4?
Assume that the probability that a bomb dropped from an aeroplane will strike a certain target is 0.2. If 6 bombs are dropped, find the probability that exactly 2 will strike the target .
It is known that 60% of mice inoculated with a serum are protected from a certain disease. If 5 mice are inoculated, find the probability that none contract the disease .
It is known that 60% of mice inoculated with a serum are protected from a certain disease. If 5 mice are inoculated, find the probability that more than 3 contract the disease .
The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university all will graduate .
A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability distribution of the number of successes.
A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that none of the bulbs is defective .
If on an average 9 ships out of 10 arrive safely at ports, find the mean and S.D. of the ships returning safely out of a total of 500 ships.
The probability that an item produced by a factory is defective is 0.02. A shipment of 10,000 items is sent to its warehouse. Find the expected number of defective items and the standard deviation.
A die is tossed twice. A 'success' is getting an even number on a toss. Find the variance of number of successes.
A die is thrown three times. Let X be 'the number of twos seen'. Find the expectation of X.
A rifleman is firing at a distant target and has only 10% chance of hitting it. The least number of rounds he must fire in order to have more than 50% chance of hitting it at least once is
A fair die is thrown twenty times. The probability that on the tenth throw the fourth six appears is
Fifteen coupons are numbered 1 to 15. Seven coupons are selected at random one at a time with replacement. The probability that the largest number appearing on a selected coupon is 9 is
In a binomial distribution, the probability of getting success is 1/4 and standard deviation is 3. Then, its mean is
A coin is tossed 4 times. The probability that at least one head turns up is
Mark the correct alternative in the following question:
Suppose a random variable X follows the binomial distribution with parameters n and p, where 0 < p < 1. If \[\frac{P\left( X = r \right)}{P\left( X = n - r \right)}\] is independent of n and r, then p equals
Mark the correct alternative in the following question:
The probability that a person is not a swimmer is 0.3. The probability that out of 5 persons 4 are swimmers is
Mark the correct alternative in the following question:
The probability of guessing correctly at least 8 out of 10 answers of a true false type examination is
For X ~ B(n, p) and P(X = x) = `""^8"C"_x(1/2)^x (1/2)^(8 - x)`, then state value of n and p
The mean, median and mode for binomial distribution will be equal when
If a fair coin is tossed 10 times. Find the probability of getting at most six heads.
An ordinary dice is rolled for a certain number of times. If the probability of getting an odd number 2 times is equal to the probability of getting an even number 3 times, then the probability of getting an odd number for odd number of times is ______.
In three throws with a pair of dice find the chance of throwing doublets at least twice.
A fair coin is tossed 8 times. Find the probability that it shows heads at most once.