हिंदी

A Coin is Tossed 4 Times. the Probability that at Least One Head Turns up is - Mathematics

Advertisements
Advertisements

प्रश्न

A coin is tossed 4 times. The probability that at least one head turns up is

विकल्प

  • \[\frac{1}{16}\]

     
  • \[\frac{2}{16}\]

     
  • \[\frac{14}{16}\]

     
  • \[\frac{15}{16}\]

     
MCQ

उत्तर

\[\frac{15}{16}\]

Let X denote the number of heads obtained in four tosses of a coin .
Then X follows a binomial distribution with

\[n = 4 \text{ and } p = q = \frac{1}{2}\]
\[\text{ Distribution is given by } \]
\[P(X = r) = ^{4}{}{C}_r \left( \frac{1}{2} \right)^r \left( \frac{1}{2} \right)^{4 - r} \]
\[ \therefore P(X = r) = ^{4}{}{C}_0 \left( \frac{1}{2} \right)^0 \left( \frac{1}{2} \right)^{4 - 0} \]
\[P(\text{ atleast one head turns up} )  = P(X \geq 1) \]
\[ = 1 - P(X = 0) \]
\[ = 1 - \frac{1}{2^4}\]
\[ = \frac{15}{16}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 33: Binomial Distribution - MCQ [पृष्ठ २९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 33 Binomial Distribution
MCQ | Q 22 | पृष्ठ २९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Given X ~ B (n, p)
If n = 10 and p = 0.4, find E(X) and var (X).


A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of two successes.


A bag consists of 10 balls each marked with one of the digits 0 to 9. If four balls are drawn successively with replacement from the bag, what is the probability that none is marked with the digit 0?


A couple has two children, Find the probability that both children are females, if it is known that the elder child is a female.


Suppose that 90% of people are right-handed. What is the probability that at most 6 of a random sample of 10 people are right-handed?


How many times must a man toss a fair coin so that the probability of having at least one head is more than 90%?


A fair coin is tossed 8 times. Find the probability that it shows heads exactly 5 times.


A bag contains 10 balls, each marked with one of the digits from 0 to 9. If four balls are drawn successively with replacement from the bag, what is the probability that none is marked with the digit 0?


A bag contains 7 green, 4 white and 5 red balls. If four balls are drawn one by one with replacement, what is the probability that one is red?


An urn contains four white and three red balls. Find the probability distribution of the number of red balls in three draws with replacement from the urn.


Three cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the mean and variance of number of red cards. 


An unbiased die is thrown twice. A success is getting a number greater than 4. Find the probability distribution of the number of successes.

 

An unbiased coin is tossed 8 times. Find, by using binomial distribution, the probability of getting at least 6 heads.

 

Six coins are tossed simultaneously. Find the probability of getting
(i) 3 heads
(ii) no heads
(iii) at least one head


The probability that a certain kind of component will survive a given shock test is \[\frac{3}{4} .\]  Find the probability that among 5 components tested at most 3 will survive .

 

Assume that the probability that a bomb dropped from an aeroplane will strike a certain target is 0.2. If 6 bombs are dropped, find the probability that at least 2 will strike the target

 

How many times must a man toss a fair coin so that the probability of having at least one head is more than 90% ?


A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability distribution of the number of successes.


The probability of a man hitting a target is 0.25. He shoots 7 times. What is the probability of his hitting at least twice?


Find the binomial distribution whose mean is 5 and variance \[\frac{10}{3} .\]

 

The mean and variance of a binomial variate with parameters n and p are 16 and 8, respectively. Find P (X = 0), P (X = 1) and P (X ≥ 2).

 

If a random variable X follows a binomial distribution with mean 3 and variance 3/2, find P (X ≤ 5).


A die is thrown three times. Let X be 'the number of twos seen'. Find the expectation of X.    


If X is a binomial variate with parameters n and p, where 0 < p < 1 such that \[\frac{P\left( X = r \right)}{P\left( X = n - r \right)}\text{ is } \] independent of n and r, then p equals 


Let X denote the number of times heads occur in n tosses of a fair coin. If P (X = 4), P (X= 5) and P (X = 6) are in AP, the value of n is 


One hundred identical coins, each with probability p of showing heads are tossed once. If 0 < p < 1 and the probability of heads showing on 50 coins is equal to that of heads showing on 51 coins, the value of p is


The least number of times a fair coin must be tossed so that the probability of getting at least one head is at least 0.8, is


A biased coin with probability p, 0 < p < 1, of heads is tossed until a head appears for the first time. If the probability that the number of tosses required is even is 2/5, then p equals


A coin is tossed n times. The probability of getting at least once is greater than 0.8. Then, the least value of n, is


Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that  only 3 cards are spades ? 


Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that  none is a spade ?


A box B1 contains 1 white ball and 3 red balls. Another box B2 contains 2 white balls and 3 red balls. If one ball is drawn at random from each of the boxes B1 and B2, then find the probability that the two balls drawn are of the same colour.


An ordinary dice is rolled for a certain number of times. If the probability of getting an odd number 2 times is equal to the probability of getting an even number 3 times, then the probability of getting an odd number for odd number of times is ______.


A fair coin is tossed 8 times. Find the probability that it shows heads at most once.


A student is given a quiz with 10 true or false questions and he answers by sheer guessing. If X is the number of questions answered correctly write the p.m.f. of X. If the student passes the quiz by getting 7 or more correct answers what is the probability that the student passes the quiz?


The mean and variance of binomial distribution are 4 and 2 respectively. Find the probability of two successes.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×