Advertisements
Advertisements
प्रश्न
The least number of times a fair coin must be tossed so that the probability of getting at least one head is at least 0.8, is
विकल्प
7
6
5
3
उत्तर
3
Let X denote the number of coins.
Then, X follows a binomial distribution with
\[p = \frac{1}{2} , q = \frac{1}{2}\]
\[\text{ It is given that } P(X \geq 1) \geq 0 . 8\]
\[ \Rightarrow 1 - P(X = 0) \geq 0 . 8\]
\[ \Rightarrow P(X = 0) \leq 1 - 0 . 8 \]
\[ \Rightarrow P(X = 0) = 0 . 2\]
\[ \Rightarrow \frac{1}{2^n} \leq 0 . 2 \]
\[ \Rightarrow 2^n \geq \frac{1}{0 . 2}\]
\[ \Rightarrow 2^n \geq 5\]
\[\text{ This is possible when n } \geq 3\]
\[\text{ So, the least value of n is } 3 .\]
APPEARS IN
संबंधित प्रश्न
Given X ~ B (n, p)
If n = 10 and p = 0.4, find E(X) and var (X).
A bag consists of 10 balls each marked with one of the digits 0 to 9. If four balls are drawn successively with replacement from the bag, what is the probability that none is marked with the digit 0?
A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is 1/100. What is the probability that he will in a prize (a) at least once (b) exactly once (c) at least twice?
Find the probability of throwing at most 2 sixes in 6 throws of a single die.
How many times must a man toss a fair coin so that the probability of having at least one head is more than 90%?
A fair coin is tossed 9 times. Find the probability that it shows head exactly 5 times.
Eight coins are thrown simultaneously. Find the chance of obtaining at least six heads.
In a large bulk of items, 5 percent of the items are defective. What is the probability that a sample of 10 items will include not more than one defective item?
The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs none will fuse after 150 days of use
An urn contains four white and three red balls. Find the probability distribution of the number of red balls in three draws with replacement from the urn.
The mathematics department has 8 graduate assistants who are assigned to the same office. Each assistant is just as likely to study at home as in office. How many desks must there be in the office so that each assistant has a desk at least 90% of the time?
It is known that 60% of mice inoculated with a serum are protected from a certain disease. If 5 mice are inoculated, find the probability that none contract the disease .
In a hospital, there are 20 kidney dialysis machines and the chance of any one of them to be out of service during a day is 0.02. Determine the probability that exactly 3 machines will be out of service on the same day.
The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university only one will graduate .
Suppose X has a binomial distribution with n = 6 and \[p = \frac{1}{2} .\] Show that X = 3 is the most likely outcome.
A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that more than 8 bulbs work properly
The mean of a binomial distribution is 20 and the standard deviation 4. Calculate the parameters of the binomial distribution.
The mean and variance of a binomial variate with parameters n and p are 16 and 8, respectively. Find P (X = 0), P (X = 1) and P (X ≥ 2).
A die is thrown three times. Let X be 'the number of twos seen'. Find the expectation of X.
In a binomial distribution, if n = 20 and q = 0.75, then write its mean.
In a group of 200 items, if the probability of getting a defective item is 0.2, write the mean of the distribution.
The mean of a binomial distribution is 10 and its standard deviation is 2; write the value of q.
If the mean and variance of a binomial variate X are 2 and 1 respectively, find P (X > 1).
If the mean and variance of a binomial distribution are 4 and 3, respectively, find the probability of no success.
If for a binomial distribution P (X = 1) = P (X = 2) = α, write P (X = 4) in terms of α.
In a box containing 100 bulbs, 10 are defective. What is the probability that out of a sample of 5 bulbs, none is defective?
If in a binomial distribution n = 4, P (X = 0) = \[\frac{16}{81}\], then P (X = 4) equals
A fair die is thrown twenty times. The probability that on the tenth throw the fourth six appears is
Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that none is a spade ?
The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs more than one will fuse after 150 days of use
Determine the binomial distribution where mean is 9 and standard deviation is `3/2` Also, find the probability of obtaining at most one success.
Bernoulli distribution is a particular case of binomial distribution if n = ______
For Bernoulli Distribution, state formula for E(X) and V(X).
Which one is not a requirement of a binomial distribution?
If x4 occurs in the tth term in the expansion of `(x^4 + 1/x^3)^15`, then the value oft is equal to:
If a random variable X follows the Binomial distribution B(5, p) such that P(X = 0) = P(X = 1), then `(P(X = 2))/(P(X = 3))` is equal to ______.
An experiment succeeds thrice as often as it fails. Then in next five trials, find the probability that there will be two successes.
The mean and variance of binomial distribution are 4 and 2 respectively. Find the probability of two successes.
For the binomial distribution X ∼ B(n, p), n = 6 and P(X = 4) = P(X = 2). find p.