हिंदी

A Rifleman is Firing at a Distant Target and Has Only 10% Chance of Hitting It.The Least Number of Rounds He Must Fire in Order to Have More than 50% Chance of Hitting It at Least Once is (A) 11 (B) 9 - Mathematics

Advertisements
Advertisements

प्रश्न

A rifleman is firing at a distant target and has only 10% chance of hitting it. The least number of rounds he must fire in order to have more than 50% chance of hitting it at least once is

विकल्प

  • 11

  • 9

  • 7

  • 5

     
MCQ

उत्तर

7
Let p=chance of hitting a distant target

\[\Rightarrow\] p =10% or p= 0.1

\[\Rightarrow q = 1 - 0 . 1 = 0 . 9\]
\[\text{ Let n be the least number of rounds } . \]
\[P(\text{ hitting atleast once} ) = P(X \geq 1) \]
\[ \Rightarrow 1 - P(X = 0) \geq 50 \% \]
\[ \Rightarrow 1 - P(X = 0) \geq 0 . 5\]
\[P(X = 0) \leq 0 . 5\]
\[ \Rightarrow (0 . 9 )^n \leq 0 . 5\]
\[\text{ Taking } \text{ log on both the sides, we get} \]
\[ n \text{ log }  0 . 9 \leq \log 0 . 5 \]
\[ \Rightarrow n \leq \frac{\log 0 . 5}{\log 0 . 9}\]
\[ \Rightarrow n \leq 7 . 2 \]
\[\text{ Therefore, 7 is the least number of rounds that he must fire in order } \]
\[ \text{ to have more than 50 % chance of hitting the target at least once } . \]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 33: Binomial Distribution - MCQ [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 33 Binomial Distribution
MCQ | Q 3 | पृष्ठ २८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Given that X ~ B(n= 10, p). If E(X) = 8 then the value of

p is ...........

(a) 0.6

(b) 0.7

(c) 0.8

(d) 0.4


There are 5% defective items in a large bulk of items. What is the probability that a sample of 10 items will include not more than one defective item?


Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards. What is the probability that

  1. all the five cards are spades?
  2. only 3 cards are spades?
  3. none is a spade?

Suppose X has a binomial distribution `B(6, 1/2)`. Show that X = 3 is the most likely outcome.

(Hint: P(X = 3) is the maximum among all P (xi), xi = 0, 1, 2, 3, 4, 5, 6)


On a multiple choice examination with three possible answers for each of the five questions, what is the probability that a candidate would get four or more correct answers just by guessing?


A couple has two children, Find the probability that both children are females, if it is known that the elder child is a female.


Suppose that 90% of people are right-handed. What is the probability that at most 6 of a random sample of 10 people are right-handed?


An experiment succeeds twice as often as it fails. Find the probability that in the next six trials, there will be at least 4 successes.


If getting 5 or 6 in a throw of an unbiased die is a success and the random variable X denotes the number of successes in six throws of the die, find P (X ≥ 4).

 

Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that all the five cards are spades ?



A box contains 100 tickets, each bearing one of the numbers from 1 to 100. If 5 tickets are drawn successively with replacement from the box, find the probability that all the tickets bear numbers divisible by 10.


A coin is tossed 5 times. If X is the number of heads observed, find the probability distribution of X.

 

An unbiased coin is tossed 8 times. Find, by using binomial distribution, the probability of getting at least 6 heads.

 

Six coins are tossed simultaneously. Find the probability of getting
(i) 3 heads
(ii) no heads
(iii) at least one head


Assume that the probability that a bomb dropped from an aeroplane will strike a certain target is 0.2. If 6 bombs are dropped, find the probability that at least 2 will strike the target

 

In a hospital, there are 20 kidney dialysis machines and the chance of any one of them to be out of service during a day is 0.02. Determine the probability that exactly 3 machines will be out of service on the same day.


The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university only one will graduate .


Suppose X has a binomial distribution with = 6 and \[p = \frac{1}{2} .\]  Show that X = 3 is the most likely outcome.

 
 

In a binomial distribution the sum and product of the mean and the variance are \[\frac{25}{3}\] and \[\frac{50}{3}\]

 respectively. Find the distribution.

 
 

If a random variable X follows a binomial distribution with mean 3 and variance 3/2, find P (X ≤ 5).


If X follows a binomial distribution with mean 4 and variance 2, find P (X ≥ 5).

 

The mean and variance of a binomial distribution are \[\frac{4}{3}\] and \[\frac{8}{9}\] respectively. Find P (X ≥ 1).

 
 

If the mean and variance of a random variable X with a binomial distribution are 4 and 2 respectively, find P (X = 1).

 

One hundred identical coins, each with probability p of showing heads are tossed once. If 0 < p < 1 and the probability of heads showing on 50 coins is equal to that of heads showing on 51 coins, the value of p is


Fifteen coupons are numbered 1 to 15. Seven coupons are selected at random one at a time with replacement. The probability that the largest number appearing on a selected coupon is 9 is


The probability of selecting a male or a female is same. If the probability that in an office of n persons (n − 1) males being selected is  \[\frac{3}{2^{10}}\] , the value of n is

 


Mark the correct alternative in the following question:
A box contains 100 pens of which 10 are defective. What is the probability that out of a sample of 5 pens drawn one by one with replacement at most one is defective?


Mark the correct alternative in the following question:

Which one is not a requirement of a binomial dstribution?


Mark the correct alternative in the following question:

The probability of guessing correctly at least 8 out of 10 answers of a true false type examination is


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs not more than one will fuse after 150 days of use 


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs more than one will fuse after 150 days of use 


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs at least one will fuse after 150 days of use 


The sum of n terms of the series `1 + 2(1 + 1/n) + 3(1 + 1/n)^2 + ...` is


If x4 occurs in the tth term in the expansion of `(x^4 + 1/x^3)^15`, then the value oft is equal to:


A pair of dice is thrown four times. If getting a doublet is considered a success then find the probability of two success.


The mean and variance of a binomial distribution are α and `α/3` respectively. If P(X = 1) = `4/243`, then P(X = 4 or 5) is equal to ______.


In three throws with a pair of dice find the chance of throwing doublets at least twice.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×