हिंदी

In a 20-question True-false Examination, Suppose a Student Tosses a Fair Coin to Determine His Answer to Each Question. for Every Head, He Answers 'True' and for Every Tail, He Answers 'False'. - Mathematics

Advertisements
Advertisements

प्रश्न

In a 20-question true-false examination, suppose a student tosses a fair coin to determine his answer to each question. For every head, he answers 'true' and for every tail, he answers 'false'. Find the probability that he answers at least 12 questions correctly.

योग

उत्तर

Let X denote the number of correct answers.
Then, X follows a binomial distribution with \[n = 20\]

\[\text{ Let p be the probability of a correct answer}  . \]
\[ \Rightarrow p = \text{ getting a head and a right answer to be true or getting a tail and a right answer to be false } \]
\[ \Rightarrow p = \frac{1}{2}\]
\[ \therefore q = 1 - \frac{1}{2} = \frac{1}{2}\]
\[\text{ Hence, the distribution is given by } \]
\[P(X = r) = ^{20}{}{C}_r \left( \frac{1}{2} \right)^r \left( \frac{1}{2} \right)^{20 - r} , r = 0, 1, 2, 3 . . . . . . 20\]
\[ = \frac{^{20}{}{C}_r}{2^{20}}\]
\[\text{ Probability that the student answers at least 12 questions correctly } = P(X \geq 12) \]
\[ = P(X = 12) + P(X = 13) + . . . + P(X = 20)\]
\[ = \frac{^{20}{}{C}_{12} + ^{20}{}{C}_{13} + . . . +^{20}{}{C}_{20}}{2^{20}}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 33: Binomial Distribution - Exercise 33.1 [पृष्ठ १४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 33 Binomial Distribution
Exercise 33.1 | Q 41 | पृष्ठ १४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Given that X ~ B(n= 10, p). If E(X) = 8 then the value of

p is ...........

(a) 0.6

(b) 0.7

(c) 0.8

(d) 0.4


A fair coin is tossed 8 times. Find the probability that it shows heads at least once


Find the probability of getting 5 exactly twice in 7 throws of a die.


Find the probability of throwing at most 2 sixes in 6 throws of a single die.


A couple has two children, Find the probability that both children are males, if it is known that at least one of the children is male.


The probability that a student is not a swimmer is 1/5 . Then the probability that out of five students, four are swimmers is

(A) `""^5C_4 (4/5)^4 1/5`

(B) `(4/5)^4 1/5

(C) `""^5C_1 1/5 (4/5)^4 `

(D) None of these


In a hurdle race, a player has to cross 10 hurdles. The probability that he will clear each hurdle is 5/6 . What is the probability that he will knock down fewer than 2 hurdles?


If getting 5 or 6 in a throw of an unbiased die is a success and the random variable X denotes the number of successes in six throws of the die, find P (X ≥ 4).

 

A box contains 100 tickets, each bearing one of the numbers from 1 to 100. If 5 tickets are drawn successively with replacement from the box, find the probability that all the tickets bear numbers divisible by 10.


Find the probability distribution of the number of doublets in 4 throws of a pair of dice.

 

Find the probability distribution of the number of sixes in three tosses of a die.

 

Three cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the mean and variance of number of red cards. 


Five dice are thrown simultaneously. If the occurrence of 3, 4 or 5 in a single die is considered a success, find the probability of at least 3 successes.


The probability that a certain kind of component will survive a given shock test is \[\frac{3}{4} .\]  Find the probability that among 5 components tested exactly 2 will survive .

 

The probability that a certain kind of component will survive a given shock test is \[\frac{3}{4} .\]  Find the probability that among 5 components tested at most 3 will survive .

 

Assume that the probability that a bomb dropped from an aeroplane will strike a certain target is 0.2. If 6 bombs are dropped, find the probability that exactly 2 will strike the target .


It is known that 60% of mice inoculated with a serum are protected from a certain disease. If 5 mice are inoculated, find the probability that more than 3 contract the disease .

 

An experiment succeeds twice as often as it fails. Find the probability that in the next 6 trials there will be at least 4 successes.

 

A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is `1/100`. What is the probability that he will win a prize at least once. 


A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is \[\frac{1}{100} .\]  What is the probability that he will win a prize exactly once.


The probability of a man hitting a target is 0.25. He shoots 7 times. What is the probability of his hitting at least twice?


A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that  more than 8 bulbs work properly                                                                                                                            

 

 


If in a binomial distribution n = 4, P (X = 0) = \[\frac{16}{81}\], then P (X = 4) equals

 


A fair coin is tossed 100 times. The probability of getting tails an odd number of times is


Let X denote the number of times heads occur in n tosses of a fair coin. If P (X = 4), P (X= 5) and P (X = 6) are in AP, the value of n is 


If X follows a binomial distribution with parameters n = 8 and p = 1/2, then P (|X − 4| ≤ 2) equals


In a binomial distribution, the probability of getting success is 1/4 and standard deviation is 3. Then, its mean is


Mark the correct alternative in the following question:

The probability of guessing correctly at least 8 out of 10 answers of a true false type examination is


One of the condition of Bernoulli trials is that the trials are independent of each other.


If X follows binomial distribution with parameters n = 5, p and P(X = 2) = 9, P(X = 3), then p = ______.


If x4 occurs in the tth term in the expansion of `(x^4 + 1/x^3)^15`, then the value oft is equal to:


If the coefficients of x7 and x8 in `(2 + x/3)^n` are equal, then n is


A pair of dice is thrown four times. If getting a doublet is considered a success then find the probability of two success.


If a fair coin is tossed 10 times. Find the probability of getting at most six heads.


A box B1 contains 1 white ball and 3 red balls. Another box B2 contains 2 white balls and 3 red balls. If one ball is drawn at random from each of the boxes B1 and B2, then find the probability that the two balls drawn are of the same colour.


If a random variable X follows the Binomial distribution B(5, p) such that P(X = 0) = P(X = 1), then `(P(X = 2))/(P(X = 3))` is equal to ______.


A student is given a quiz with 10 true or false questions and he answers by sheer guessing. If X is the number of questions answered correctly write the p.m.f. of X. If the student passes the quiz by getting 7 or more correct answers what is the probability that the student passes the quiz?


If X ∼ B(n, p), n = 6 and 9 P(X = 4) = P(X = 2), then find the value of p.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×