हिंदी

An Experiment Succeeds Twice as Often as It Fails. Find the Probability that in the Next 6 Trials There Will Be at Least 4 Successes. - Mathematics

Advertisements
Advertisements

प्रश्न

An experiment succeeds twice as often as it fails. Find the probability that in the next 6 trials there will be at least 4 successes.

 
योग

उत्तर

Let X denote the number of successes in 6 trials.

\[\text{ It is given that successes are twice the failures }. \]
\[ \Rightarrow p = 2q\]
\[ p + q = 1\]
\[ \Rightarrow 3q = 1\]
\[ \Rightarrow q = \frac{1}{3}\]
\[ \therefore p = 1 - \frac{1}{3} = \frac{2}{3}\]
\[ n = 6\]
\[\text{ Hence, the distribution is given by } \]

\[P(X = r) =^{6}{}{C}_r \left( \frac{2}{3} \right)^r \left( \frac{1}{3} \right)^{6 - r} , r = 0, 1, 2 . . . . . 6\]
\[P(\text{ atleast 4 successes} ) = P(X \geq 4) \]
\[ = P(X = 4) + P(X = 5) + P(X = 6)\]
\[^{6}{}{C}_4 \left( \frac{2}{3} \right)^4 \left( \frac{1}{3} \right)^{6 - 4} + ^{6}{}{C}_5 \left( \frac{2}{3} \right)^5 \left( \frac{1}{3} \right)^{6 - 5} + ^{6}{}{C}_6 \left( \frac{2}{3} \right)^6 \left( \frac{1}{3} \right)^{6 - 6} \]
\[ = \frac{15( 2^4 ) + 6(32) + 64}{3^6}\]
\[ = \frac{240 + 192 + 64}{729}\]
\[ = \frac{496}{729}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 33: Binomial Distribution - Exercise 33.1 [पृष्ठ १४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 33 Binomial Distribution
Exercise 33.1 | Q 37 | पृष्ठ १४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

A fair coin is tossed 8 times. Find the probability that it shows heads at least once


Find the probability of throwing at most 2 sixes in 6 throws of a single die.


A couple has two children, Find the probability that both children are males, if it is known that at least one of the children is male.


Eight coins are thrown simultaneously. Find the chance of obtaining at least six heads.

 

Three cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the mean and variance of number of red cards. 


A coin is tossed 5 times. If X is the number of heads observed, find the probability distribution of X.

 

A card is drawn and replaced in an ordinary pack of 52 cards. How many times must a card be drawn so that (i) there is at least an even chance of drawing a heart (ii) the probability of drawing a heart is greater than 3/4?


An unbiased coin is tossed 8 times. Find, by using binomial distribution, the probability of getting at least 6 heads.

 

Suppose that a radio tube inserted into a certain type of set has probability 0.2 of functioning more than 500 hours. If we test 4 tubes at random what is the probability that exactly three of these tubes function for more than 500 hours?


The probability that a certain kind of component will survive a given shock test is \[\frac{3}{4} .\]  Find the probability that among 5 components tested exactly 2 will survive .

 

Ten eggs are drawn successively, with replacement, from a lot containing 10% defective eggs. Find the probability that there is at least one defective egg.


Suppose X has a binomial distribution with = 6 and \[p = \frac{1}{2} .\]  Show that X = 3 is the most likely outcome.

 
 

In a multiple-choice examination with three possible answers for each of the five questions out of which only one is correct, what is the probability that a candidate would get four or more correct answers just by guessing?


A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is \[\frac{1}{100} .\]  What is the probability that he will win a prize at least twice.


How many times must a man toss a fair coin so that the probability of having at least one head is more than 90% ?


Find the probability that in 10 throws of a fair die, a score which is a multiple of 3 will be obtained in at least 8 of the throws. 


A die is thrown 5 times. Find the probability that an odd number will come up exactly three times. 


The probability of a man hitting a target is 0.25. He shoots 7 times. What is the probability of his hitting at least twice?


If X follows a binomial distribution with mean 4 and variance 2, find P (X ≥ 5).

 

In a binomial distribution, if n = 20 and q = 0.75, then write its mean.

 

If the mean of a binomial distribution is 20 and its standard deviation is 4, find p.

 

In a box containing 100 bulbs, 10 are defective. What is the probability that out of a sample of 5 bulbs, none is defective?


A rifleman is firing at a distant target and has only 10% chance of hitting it. The least number of rounds he must fire in order to have more than 50% chance of hitting it at least once is


One hundred identical coins, each with probability p of showing heads are tossed once. If 0 < p < 1 and the probability of heads showing on 50 coins is equal to that of heads showing on 51 coins, the value of p is


A coin is tossed 10 times. The probability of getting exactly six heads is


If the mean and variance of a binomial distribution are 4 and 3, respectively, the probability of getting exactly six successes in this distribution is


Mark the correct alternative in the following question:
Suppose a random variable X follows the binomial distribution with parameters n and p, where 0 < p < 1. If \[\frac{P\left( X = r \right)}{P\left( X = n - r \right)}\] is independent of n and r, then p equals


Mark the correct alternative in the following question:

Which one is not a requirement of a binomial dstribution?


A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that any two are white ?


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs at least one will fuse after 150 days of use 


 Determine the binomial distribution where mean is 9 and standard deviation is `3/2` Also, find the probability of obtaining at most one success. 


Find the mean and variance of the random variable X which denotes the number of doublets in four throws of a pair of dice.


In a multiple-choice examination with three possible answers for each of the five questions, what is the probability that a candidate would get four or more correct answers just by guessing?

Which one is not a requirement of a binomial distribution?


The sum of n terms of the series `1 + 2(1 + 1/n) + 3(1 + 1/n)^2 + ...` is


If in the binomial expansion of (1 + x)n where n is a natural number, the coefficients of the 5th, 6th and 7th terms are in A.P., then n is equal to:


An experiment succeeds thrice as often as it fails. Then in next five trials, find the probability that there will be two successes.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×