हिंदी

If the Probability of a Defective Bolt is 0.1, Find the (I) Mean and (Ii) Standard Deviation for the Distribution of Bolts in a Total of 400 Bolts. - Mathematics

Advertisements
Advertisements

प्रश्न

If the probability of a defective bolt is 0.1, find the (i) mean and (ii) standard deviation for the distribution of bolts in a total of 400 bolts.

योग

उत्तर

Total number of bolts (n) = 400 and p = prob of defective bolts = 0.1
(i) Mean = np = 400(0.1) =40

(ii) Variance = npq = 40(1-0.1) = 36

So, the standard deviation =\[\sqrt{36} = 6\]

 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 33: Binomial Distribution - Exercise 33.2 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 33 Binomial Distribution
Exercise 33.2 | Q 8 | पृष्ठ २५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

In an examination, 20 questions of true-false type are asked. Suppose a student tosses a fair coin to determine his answer to each question. If the coin falls heads, he answers ‘true’; if it falls tails, he answers ‘false’. Find the probability that he answers at least 12 questions correctly.


Find the probability of getting 5 exactly twice in 7 throws of a die.


In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs, none is defective is

(A) 10−1

(B) `(1/2)^5`

(C) `(9/10)^5`

(D) 9/10


In a hurdle race, a player has to cross 10 hurdles. The probability that he will clear each hurdle is 5/6 . What is the probability that he will knock down fewer than 2 hurdles?


How many times must a man toss a fair coin so that the probability of having at least one head is more than 90%?


The probability of a man hitting a target is 1/4. If he fires 7 times, what is the probability of his hitting the target at least twice?


Assume that on an average one telephone number out of 15 called between 2 P.M. and 3 P.M. on week days is busy. What is the probability that if six randomly selected telephone numbers are called, at least 3 of them will be busy?


If getting 5 or 6 in a throw of an unbiased die is a success and the random variable X denotes the number of successes in six throws of the die, find P (X ≥ 4).

 

Eight coins are thrown simultaneously. Find the chance of obtaining at least six heads.

 

A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that none is white ?


A bag contains 10 balls, each marked with one of the digits from 0 to 9. If four balls are drawn successively with replacement from the bag, what is the probability that none is marked with the digit 0?


Suppose that 90% of people are right-handed. What is the probability that at most 6 of a random sample of 10 people are right-handed?


Six coins are tossed simultaneously. Find the probability of getting
(i) 3 heads
(ii) no heads
(iii) at least one head


Assume that the probability that a bomb dropped from an aeroplane will strike a certain target is 0.2. If 6 bombs are dropped, find the probability that at least 2 will strike the target

 

The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university none will graduate 


Ten eggs are drawn successively, with replacement, from a lot containing 10% defective eggs. Find the probability that there is at least one defective egg.


Find the probability that in 10 throws of a fair die, a score which is a multiple of 3 will be obtained in at least 8 of the throws. 


The probability of a man hitting a target is 0.25. He shoots 7 times. What is the probability of his hitting at least twice?


A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that none of the bulbs is defective .

 

If the mean and variance of a binomial distribution are respectively 9 and 6, find the distribution.


If on an average 9 ships out of 10 arrive safely at ports, find the mean and S.D. of the ships returning safely out of a total of 500 ships.


In eight throws of a die, 5 or 6 is considered a success. Find the mean number of successes and the standard deviation.


Find the expected number of boys in a family with 8 children, assuming the sex distribution to be equally probable.


If the mean and variance of a binomial distribution are 4 and 3, respectively, find the probability of no success.


If X follows binomial distribution with parameters n = 5, p and P(X = 2) = 9P(X = 3), then find the value of p.  


A rifleman is firing at a distant target and has only 10% chance of hitting it. The least number of rounds he must fire in order to have more than 50% chance of hitting it at least once is


A fair coin is tossed 100 times. The probability of getting tails an odd number of times is


Let X denote the number of times heads occur in n tosses of a fair coin. If P (X = 4), P (X= 5) and P (X = 6) are in AP, the value of n is 


The least number of times a fair coin must be tossed so that the probability of getting at least one head is at least 0.8, is


A five-digit number is written down at random. The probability that the number is divisible by 5, and no two consecutive digits are identical, is


Mark the correct alternative in the following question:
The probability that a person is not a swimmer is 0.3. The probability that out of 5 persons 4 are swimmers is


Mark the correct alternative in the following question:

The probability of guessing correctly at least 8 out of 10 answers of a true false type examination is


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs more than one will fuse after 150 days of use 


Bernoulli distribution is a particular case of binomial distribution if n = ______


For X ~ B(n, p) and P(X = x) = `""^8"C"_x(1/2)^x (1/2)^(8 - x)`, then state value of n and p


If X follows binomial distribution with parameters n = 5, p and P(X = 2) = 9, P(X = 3), then p = ______.


If x4 occurs in the tth term in the expansion of `(x^4 + 1/x^3)^15`, then the value oft is equal to:


If in the binomial expansion of (1 + x)n where n is a natural number, the coefficients of the 5th, 6th and 7th terms are in A.P., then n is equal to:


An experiment succeeds thrice as often as it fails. Then in next five trials, find the probability that there will be two successes.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×