English

If the Mean and Variance of a Binomial Variate X Are 2 and 1 Respectively, Then the Probability that X Takes a Value Greater than 1 is (A) 2/3 (B) 4/5 (C) 7/8 (D) 15/16 - Mathematics

Advertisements
Advertisements

Question

If the mean and variance of a binomial variate X are 2 and 1 respectively, then the probability that X takes a value greater than 1 is

Options

  • 2/3

  • 4/5

  • 7/8

  • 15/16

     
MCQ

Solution

15/16

Mean =2 and variance =1

\[\Rightarrow np = 2 \text{ and npq }  = 1\]
\[ \Rightarrow q = \frac{1}{2} \]
\[ \Rightarrow p = 1 - \frac{1}{2} = \frac{1}{2} \]
\[n = \frac{\text{ Mean} }{p}\]
\[ \Rightarrow n = 4\]
\[\text{ Hence, the distribution is given by } \]
\[P\left( X = r \right) =^{4}{}{C}_r \left( \frac{1}{2} \right)^r \left( \frac{1}{2} \right)^{4 - r} , r = 0, 1, 2, 3, 4\]
\[ \therefore P(X \geq 1) = 1 - P(X = 0) \]
\[ = 1 - \frac{1}{2^4}\]
\[ = \frac{15}{16}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 33: Binomial Distribution - MCQ [Page 28]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 33 Binomial Distribution
MCQ | Q 12 | Page 28

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of two successes.


In an examination, 20 questions of true-false type are asked. Suppose a student tosses a fair coin to determine his answer to each question. If the coin falls heads, he answers ‘true’; if it falls tails, he answers ‘false’. Find the probability that he answers at least 12 questions correctly.


In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs, none is defective is

(A) 10−1

(B) `(1/2)^5`

(C) `(9/10)^5`

(D) 9/10


A couple has two children, Find the probability that both children are females, if it is known that the elder child is a female.


A fair coin is tossed 9 times. Find the probability that it shows head exactly 5 times.


A box contains 100 tickets, each bearing one of the numbers from 1 to 100. If 5 tickets are drawn successively with replacement from the box, find the probability that all the tickets bear numbers divisible by 10.


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs none will fuse after 150 days of use 


Find the probability distribution of the number of doublets in 4 throws of a pair of dice.

 

A card is drawn and replaced in an ordinary pack of 52 cards. How many times must a card be drawn so that (i) there is at least an even chance of drawing a heart (ii) the probability of drawing a heart is greater than 3/4?


The mathematics department has 8 graduate assistants who are assigned to the same office. Each assistant is just as likely to study at home as in office. How many desks must there be in the office so that each assistant has a desk at least 90% of the time?


The probability that a certain kind of component will survive a given shock test is \[\frac{3}{4} .\]  Find the probability that among 5 components tested exactly 2 will survive .

 

It is known that 60% of mice inoculated with a serum are protected from a certain disease. If 5 mice are inoculated, find the probability that more than 3 contract the disease .

 

Ten eggs are drawn successively, with replacement, from a lot containing 10% defective eggs. Find the probability that there is at least one defective egg.


In a 20-question true-false examination, suppose a student tosses a fair coin to determine his answer to each question. For every head, he answers 'true' and for every tail, he answers 'false'. Find the probability that he answers at least 12 questions correctly.


Suppose X has a binomial distribution with = 6 and \[p = \frac{1}{2} .\]  Show that X = 3 is the most likely outcome.

 
 

A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is \[\frac{1}{100} .\]  What is the probability that he will win a prize exactly once.


How many times must a man toss a fair coin so that the probability of having at least one head is more than 90% ?


How many times must a man toss a fair coin so that the probability of having at least one head is more than 80% ?


A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability distribution of the number of successes.


Find the probability that in 10 throws of a fair die, a score which is a multiple of 3 will be obtained in at least 8 of the throws. 


A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that none of the bulbs is defective .

 

In a binomial distribution the sum and product of the mean and the variance are \[\frac{25}{3}\] and \[\frac{50}{3}\]

 respectively. Find the distribution.

 
 

In eight throws of a die, 5 or 6 is considered a success. Find the mean number of successes and the standard deviation.


The probability that an item produced by a factory is defective is 0.02. A shipment of 10,000 items is sent to its warehouse. Find the expected number of defective items and the standard deviation.


If a random variable X follows a binomial distribution with mean 3 and variance 3/2, find P (X ≤ 5).


A fair coin is tossed a fixed number of times. If the probability of getting seven heads is equal to that of getting nine heads, the probability of getting two heads is


One hundred identical coins, each with probability p of showing heads are tossed once. If 0 < p < 1 and the probability of heads showing on 50 coins is equal to that of heads showing on 51 coins, the value of p is


The least number of times a fair coin must be tossed so that the probability of getting at least one head is at least 0.8, is


In a binomial distribution, the probability of getting success is 1/4 and standard deviation is 3. Then, its mean is


For a binomial variate X, if n = 3 and P (X = 1) = 8 P (X = 3), then p =


A coin is tossed n times. The probability of getting at least once is greater than 0.8. Then, the least value of n, is


Mark the correct alternative in the following question:

Which one is not a requirement of a binomial dstribution?


A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that any two are white ?


 Determine the binomial distribution where mean is 9 and standard deviation is `3/2` Also, find the probability of obtaining at most one success. 


Find the mean and variance of the random variable X which denotes the number of doublets in four throws of a pair of dice.


If a random variable X follows the Binomial distribution B (33, p) such that 3P(X = 0) = P(X = 1), then the value of `(P(X = 15))/(P(X = 18)) - (P(X = 16))/(P(X = 17))` is equal to ______.


In three throws with a pair of dice find the chance of throwing doublets at least twice.


The mean and variance of binomial distribution are 4 and 2 respectively. Find the probability of two successes.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×