English

An Unbiased Coin is Tossed 4 Times. Find the Mean and Variance of the Number of Heads Obtained. - Mathematics

Advertisements
Advertisements

Question

An unbiased coin is tossed 4 times. Find the mean and variance of the number of heads obtained.   

Solution

\[\text{ We have } , \]
\[p = \text{ probability of getting a head in a toss } = \frac{1}{2}, \]
\[q = \text{ probability of getting a tail in a toss } = \frac{1}{2}\]
\[\text{ Let X denote a success of getting a head in a toss . Then } , \]
\[\text{ X follows binomial distribution with parameters n = 4 and } p = \frac{1}{2}\]
\[ \therefore \text{ Mean } , E\left( X \right) = np = 4 \times \frac{1}{2} = 2\]
\[\text{ Also, variance, Var } \left( X \right) = npq = 4 \times \frac{1}{2} \times \frac{1}{2} = 1\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 33: Binomial Distribution - Very Short Answers [Page 27]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 33 Binomial Distribution
Very Short Answers | Q 11 | Page 27

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards. What is the probability that

  1. all the five cards are spades?
  2. only 3 cards are spades?
  3. none is a spade?

The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. What is the probability that out of 5 such bulbs
(i) none
(ii) not more than one
(iii) more than one
(iv) at least one, will fuse after 150 days of use.


On a multiple choice examination with three possible answers for each of the five questions, what is the probability that a candidate would get four or more correct answers just by guessing?


Find the probability of throwing at most 2 sixes in 6 throws of a single die.


It is known that 10% of certain articles manufactured are defective. What is the probability that in a random sample of 12 such articles, 9 are defective?


In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs, none is defective is

(A) 10−1

(B) `(1/2)^5`

(C) `(9/10)^5`

(D) 9/10


A couple has two children, Find the probability that both children are females, if it is known that the elder child is a female.


Suppose that 90% of people are right-handed. What is the probability that at most 6 of a random sample of 10 people are right-handed?


The probability that a student is not a swimmer is 1/5 . Then the probability that out of five students, four are swimmers is

(A) `""^5C_4 (4/5)^4 1/5`

(B) `(4/5)^4 1/5

(C) `""^5C_1 1/5 (4/5)^4 `

(D) None of these


How many times must a man toss a fair coin so that the probability of having at least one head is more than 90%?


A bag contains 10 balls, each marked with one of the digits from 0 to 9. If four balls are drawn successively with replacement from the bag, what is the probability that none is marked with the digit 0?


In a large bulk of items, 5 percent of the items are defective. What is the probability that a sample of 10 items will include not more than one defective item?

 

A bag contains 2 white, 3 red and 4 blue balls. Two balls are drawn at random from the bag. If X denotes the number of white balls among the two balls drawn, describe the probability distribution of X.


An urn contains four white and three red balls. Find the probability distribution of the number of red balls in three draws with replacement from the urn.


Find the probability distribution of the number of doublets in 4 throws of a pair of dice.

 

A man wins a rupee for head and loses a rupee for tail when a coin is tossed. Suppose that he tosses once and quits if he wins but tries once more if he loses on the first toss. Find the probability distribution of the number of rupees the man wins.


It is known that 60% of mice inoculated with a serum are protected from a certain disease. If 5 mice are inoculated, find the probability that none contract the disease .


In a 20-question true-false examination, suppose a student tosses a fair coin to determine his answer to each question. For every head, he answers 'true' and for every tail, he answers 'false'. Find the probability that he answers at least 12 questions correctly.


Suppose X has a binomial distribution with = 6 and \[p = \frac{1}{2} .\]  Show that X = 3 is the most likely outcome.

 
 

In a multiple-choice examination with three possible answers for each of the five questions out of which only one is correct, what is the probability that a candidate would get four or more correct answers just by guessing?


A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is `1/100`. What is the probability that he will win a prize at least once. 


A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is \[\frac{1}{100} .\]  What is the probability that he will win a prize at least twice.


How many times must a man toss a fair coin so that the probability of having at least one head is more than 80% ?


The mean of a binomial distribution is 20 and the standard deviation 4. Calculate the parameters of the binomial distribution.


If on an average 9 ships out of 10 arrive safely at ports, find the mean and S.D. of the ships returning safely out of a total of 500 ships.


If a random variable X follows a binomial distribution with mean 3 and variance 3/2, find P (X ≤ 5).


A die is tossed twice. A 'success' is getting an even number on a toss. Find the variance of number of successes.     


A die is thrown three times. Let X be 'the number of twos seen'. Find the expectation of X.    


If the mean and variance of a binomial distribution are 4 and 3, respectively, the probability of getting exactly six successes in this distribution is


In a binomial distribution, the probability of getting success is 1/4 and standard deviation is 3. Then, its mean is


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs more than one will fuse after 150 days of use 


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs at least one will fuse after 150 days of use 


 Determine the binomial distribution where mean is 9 and standard deviation is `3/2` Also, find the probability of obtaining at most one success. 


For X ~ B(n, p) and P(X = x) = `""^8"C"_x(1/2)^x (1/2)^(8 - x)`, then state value of n and p


A fair coin is tossed 8 times. Find the probability that it shows heads at most once.


A fair coin is tossed 6 times. Find the probability of getting heads 4 times.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×