Advertisements
Advertisements
Question
Solve the following:
For three events A, B and C, we know that A and C are independent, B and C are independent, A and B are disjoint, P(A ∪ C) = `2/3`, P(B ∪ C) = `3/4`, P(A ∪ B ∪ C) = `11/12`. Find P(A), P(B) and P(C)
Solution
It is given that
P(A ∪ C) = `2/3`, P(B ∪ C) = `3/4`, P(A ∪ B ∪ C) = `11/12`.
P(A ∪ C) = `2/3` gives,
P(A) + P(C) – P(A ∩ C) = `2/3` ...(1)
P(B ∪ C) = `3/4` gives,
P(B) + P(C) – P(B ∩ C) = `3/4` ...(2)
P(A ∪ B ∪ C) = `11/12` gives,
P(A) + P(B) + P(C) – P(A ∩ B) – P(A ∩ C) – P(B ∩ C) + P(A ∩ B ∩ C) = `11/12`
∴ P(A) + P(B) + P(C) – P(A n C) – P(B n C) = `11/12 ...[(because "A""," "B" "are disjoint"),(therefore "A" ∩ "B" = "A" ∩ "B" ∩ "C" = phi)]`
∴ `"P"("A") + "P"("B") + "P"("C") – ["P"("A") + "P"("C") - 2/3] - ["P"("B") + "P"("C") - 3/4] = 11/12` ...[By (1) and (2)]
∴ −P(C) = `11/12 - 2/3 - 3/4 = -1/2`
∴ P(C) = `1/2`
From (1),
P(A) + P(C) – P(A)·P(C) = `2/3` ...[∵ A, C are independent]
∴ `"P"("A") + 1/2 - 1/2"P"("A") = 2/3`
∴ `1/2"P"("A") = 1/6`
∴ P(A) = `1/3`
From (2),
P(B) + P(C) – P(B) P(C) = `3/4` ...[∵ B, C are independent]
∴ `"P"("B") + 1/2 - 1/2 "P"("B") = 3/4`
∴ `1/2"P"("B") = 1/4`
∴ P(B) = `1/2`
∴ P(A) = `1/3`, P(B) = P(C) = `1/2`
APPEARS IN
RELATED QUESTIONS
A fair coin and an unbiased die are tossed. Let A be the event ‘head appears on the coin’ and B be the event ‘3 on the die’. Check whether A and B are independent events or not.
Given two independent events A and B such that P (A) = 0.3, P (B) = 0.6. Find
- P (A and B)
- P(A and not B)
- P(A or B)
- P(neither A nor B)
Two events, A and B, will be independent if ______.
Prove that if E and F are independent events, then the events E and F' are also independent.
A problem in statistics is given to three students A, B, and C. Their chances of solving the problem are `1/3`, `1/4`, and `1/5` respectively. If all of them try independently, what is the probability that, problem is not solved
The odds against a certain event are 5: 2 and odds in favour of another independent event are 6: 5. Find the chance that at least one of the events will happen.
A bag contains 3 yellow and 5 brown balls. Another bag contains 4 yellow and 6 brown balls. If one ball is drawn from each bag, what is the probability that, both the balls are of the same color?
Bag A contains 3 red and 2 white balls and bag B contains 2 red and 5 white balls. A bag is selected at random, a ball is drawn and put into the other bag, and then a ball is drawn from that bag. Find the probability that both the balls drawn are of same color
A family has two children. Find the probability that both the children are girls, given that atleast one of them is a girl.
Two dice are thrown together. Let A be the event ‘getting 6 on the first die’ and B be the event ‘getting 2 on the second die’. Are the events A and B independent?
If A and B are independent events such that 0 < P(A) < 1 and 0 < P(B) < 1, then which of the following is not correct?
If A and B are independent events such that P(A) = p, P(B) = 2p and P(Exactly one of A, B) = `5/9`, then p = ______.
Let E1 and E2 be two independent events such that P(E1) = P1 and P(E2) = P2. Describe in words of the events whose probabilities are: P1 + P2 – 2P1P2
Two dice are tossed. Find whether the following two events A and B are independent: A = {(x, y): x + y = 11} B = {(x, y): x ≠ 5} where (x, y) denotes a typical sample point.
If A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A/B) = `1/4`, P(A' ∩ B') equals ______.
If A and B are two events and A ≠ Φ, B ≠ Φ, then ______.
If A and B are two events such that P(B) = `3/5`, P(A|B) = `1/2` and P(A ∪ B) = `4/5`, then P(A) equals ______.
If A and B are two independent events with P(A) = `3/5` and P(B) = `4/9`, then P(A′ ∩ B′) equals ______.
Let A and B be two events such that P(A) = `3/8`, P(B) = `5/8` and P(A ∪ B) = `3/4`. Then P(A|B).P(A′|B) is equal to ______.
If the events A and B are independent, then P(A ∩ B) is equal to ______.
Two events E and F are independent. If P(E) = 0.3, P(E ∪ F) = 0.5, then P(E|F) – P(F|E) equals ______.
If A and B are independent events, then A′ and B′ are also independent
If A and B are mutually exclusive events, then they will be independent also.
If A and B are two independent events then P(A and B) = P(A).P(B).
If A and B are two events such that P(A) > 0 and P(A) + P(B) >1, then P(B|A) ≥ `1 - ("P"("B'"))/("P"("A"))`
Two events 'A' and 'B' are said to be independent if
If P(A) = `3/5` and P(B) = `1/5`, find P(A ∩ B), If A and B are independent events.
Let A and B be independent events P(A) = 0.3 and P(B) = 0.4. Find P(A ∩ B)
Given two independent events A and B such that P(A) = 0.3, P(B) = 0.6 and P(A' ∩ B') is ______.
Events A and Bare such that P(A) = `1/2`, P(B) = `7/12` and `P(barA ∪ barB) = 1/4`. Find whether the events A and B are independent or not.
Let EC denote the complement of an event E. Let E1, E2 and E3 be any pairwise independent events with P(E1) > 0 and P(E1 ∩ E2 ∩ E3) = 0. Then `"P"(("E"_2^"C" ∩ "E"_3^"C")/"E"_1)` is equal to ______.
Given two independent events, if the probability that exactly one of them occurs is `26/49` and the probability that none of them occurs is `15/49`, then the probability of more probable of the two events is ______.
Five fair coins are tossed simultaneously. The probability of the events that at least one head comes up is ______.
Given two events A and B such that (A/B) = 0.25 and P(A ∩ B) = 0.12. The value P(A ∩ B') is ______.