English

Solve the following: Let A and B be independent events with P(A) = 14, and P(A ∪ B) = 2P(B) – P(A). Find P(AB) - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following:

Let A and B be independent events with P(A) = `1/4`, and P(A ∪ B) = 2P(B) – P(A). Find `"P"("A"/"B")`

Sum

Solution

It is given that, P(A) = `1/4` and

P(A U B) = 2P(B) – P(A) 

= `2"P"("B") - 1/4`

`"P"("A"/"B") ` = P(A)  ...[∵ A, B are independent]

= `1/4`

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Probability - Miscellaneous Exercise 9 [Page 214]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 9 Probability
Miscellaneous Exercise 9 | Q II. (12) (b) | Page 214

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

A speaks truth in 60% of the cases, while B in 90% of the cases. In what percent of cases are they likely to contradict each other in stating the same fact? In the cases of contradiction do you think, the statement of B will carry more weight as he speaks truth in more number of cases than A?


A fair coin and an unbiased die are tossed. Let A be the event ‘head appears on the coin’ and B be the event ‘3 on the die’. Check whether A and B are independent events or not.


Let E and F be events with `P(E) = 3/5, P(F) = 3/10 and P(E ∩ F) = 1/5`.  Are E and F independent?


Given that the events A and B are such that `P(A) = 1/2, PA∪B=3/5 and P (B) = p`. Find p if they are

  1. mutually exclusive
  2. independent.

Probability of solving specific problem independently by A and B are `1/2` and `1/3` respectively. If both try to solve the problem independently, find the probability that

  1. the problem is solved
  2. exactly one of them solves the problem.

One card is drawn at random from a well-shuffled deck of 52 cards. In which of the following case is the events E and F independent?

E : ‘the card drawn is a king or queen’

F : ‘the card drawn is a queen or jack’


Two events, A and B, will be independent if ______.


If each element of a second order determinant is either zero or one, what is the probability that the value of the determinant is positive? (Assume that the individual entries of the determinant are chosen independently, each value being assumed with probability `1/2`).


In a race, the probabilities of A and B winning the race are `1/3` and `1/6` respectively. Find the probability of neither of them winning the race.


A speaks the truth in 60% of the cases, while B is 40% of the cases. In what percent of cases are they likely to contradict each other in stating the same fact?


The probability that a 50-year old man will be alive till age 60 is 0.83 and the probability that a 45-year old woman will be alive till age 55 is 0.97. What is the probability that a man whose age is 50 and his wife whose age is 45 will both be alive after 10 years?


One-shot is fired from each of the three guns. Let A, B, and C denote the events that the target is hit by the first, second and third guns respectively. assuming that A, B, and C are independent events and that P(A) = 0.5, P(B) = 0.6, and P(C) = 0.8, then find the probability that at least one hit is registered.


The odds against a certain event are 5: 2 and odds in favour of another independent event are 6: 5. Find the chance that at least one of the events will happen.


Two hundred patients who had either Eye surgery or Throat surgery were asked whether they were satisfied or unsatisfied regarding the result of their surgery

The follwoing table summarizes their response:

Surgery Satisfied Unsatisfied Total
Throat 70 25 95
Eye 90 15 105
Total 160 40 200

If one person from the 200 patients is selected at random, determine the probability that person was unsatisfied given that the person had eye surgery


A family has two children. Find the probability that both the children are girls, given that atleast one of them is a girl.


Solve the following:

If P(A ∩ B) = `1/2`, P(B ∩ C) = `1/3`, P(C ∩ A) = `1/6` then find P(A), P(B) and P(C), If A,B,C are independent events.


Solve the following:

Find the probability that a year selected will have 53 Wednesdays


Solve the following:

A and B throw a die alternatively till one of them gets a 3 and wins the game. Find the respective probabilities of winning. (Assuming A begins the game)


A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("A'"/"B")`


A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("A'"/"B'")`


Let E1 and E2 be two independent events such that P(E1) = P1 and P(E2) = P2. Describe in words of the events whose probabilities are: P1P2 


Let E1 and E2 be two independent events such that P(E1) = P1 and P(E2) = P2. Describe in words of the events whose probabilities are: P1 + P2 – 2P1P2 


If A and B are two events and A ≠ Φ, B ≠ Φ, then ______.


If A and B are two events such that P(B) = `3/5`, P(A|B) = `1/2` and P(A ∪ B) = `4/5`, then P(A) equals ______.


If A and B are such events that P(A) > 0 and P(B) ≠ 1, then P(A′|B′) equals ______.


If A and B are two independent events with P(A) = `3/5` and P(B) = `4/9`, then P(A′ ∩ B′) equals ______.


Let P(A) > 0 and P(B) > 0. Then A and B can be both mutually exclusive and independent.


If A and B are two independent events then P(A and B) = P(A).P(B).


If A and B′ are independent events, then P(A' ∪ B) = 1 – P (A) P(B')


If A and B are two events such that P(A|B) = p, P(A) = p, P(B) = `1/3` and P(A ∪ B) = `5/9`, then p = ______.


The probability of obtaining an even prime number on each die when a pair of dice is rolled is


Two events 'A' and 'B' are said to be independent if


Five fair coins are tossed simultaneously. The probability of the events that at least one head comes up is ______.


The probability of the event A occurring is `1/3` and of the event B occurring is `1/2`. If A and B are independent events, then find the probability of neither A nor B occurring.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×