English

A Speaks the Truth in 60% of the Cases, While B is 40% of the Cases. in What Percent of Cases Are They Likely to Contradict Each Other in Stating the Same Fact? - Mathematics

Advertisements
Advertisements

Question

A speaks the truth in 60% of the cases, while B is 40% of the cases. In what percent of cases are they likely to contradict each other in stating the same fact?

Solution

A speaks truth `P(A) = 60/100`, `P(A') = 40/100`

B speaks truth `P(B) = 40/100`, `P(B') = 60/100`

they contradict each other = `P(A).(B') + P(A') . P(B)`

`= 60/10 xx 60/100 + 40/100 xx 40/100`

`= (3600+1600)/10000`

`= 5200/10000`

`= 52/100`

% of cases they likey to contradict each other = `52/100 xx 100 = 52%`

shaalaa.com
  Is there an error in this question or solution?
2017-2018 (March) Set 1

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

A card from a pack of 52 playing cards is lost. From the remaining cards of the pack three cards are drawn at random (without replacement) and are found to be all spades. Find the probability of the lost card being a spade.


Probability of solving specific problem independently by A and B are `1/2` and `1/3` respectively. If both try to solve the problem independently, find the probability that

  1. the problem is solved
  2. exactly one of them solves the problem.

Two events, A and B, will be independent if ______.


In a race, the probabilities of A and B winning the race are `1/3` and `1/6` respectively. Find the probability of neither of them winning the race.


If P(A) = 0·4, P(B) = p, P(A ⋃ B) = 0·6 and A and B are given to be independent events, find the value of 'p'.


The odds against student X solving a business statistics problem are 8: 6 and odds in favour of student Y solving the same problem are 14: 16 What is the chance that the problem will be solved, if they try independently?


Bag A contains 3 red and 2 white balls and bag B contains 2 red and 5 white balls. A bag is selected at random, a ball is drawn and put into the other bag, and then a ball is drawn from that bag. Find the probability that both the balls drawn are of same color


Solve the following:

If P(A ∩ B) = `1/2`, P(B ∩ C) = `1/3`, P(C ∩ A) = `1/6` then find P(A), P(B) and P(C), If A,B,C are independent events.


Solve the following:

If P(A) = `"P"("A"/"B") = 1/5, "P"("B"/"A") = 1/3` the find `"P"("A'"/"B")`


If A and B are independent events such that 0 < P(A) < 1 and 0 < P(B) < 1, then which of the following is not correct?


If A and B are independent events such that P(A) = p, P(B) = 2p and P(Exactly one of A, B) = `5/9`, then p = ______.


If A and B′ are independent events then P(A′ ∪ B) = 1 – ______.


Three events A, B and C are said to be independent if P(A ∩ B ∩ C) = P(A) P(B) P(C).


Refer to Question 1 above. If the die were fair, determine whether or not the events A and B are independent.


Let E1 and E2 be two independent events such that P(E1) = P1 and P(E2) = P2. Describe in words of the events whose probabilities are: (1 – P1) P2 


Let E1 and E2 be two independent events such that P(E1) = P1 and P(E2) = P2. Describe in words of the events whose probabilities are: 1 – (1 – P1)(1 – P2


In Question 64 above, P(B|A′) is equal to ______.


If two events are independent, then ______.


If the events A and B are independent, then P(A ∩ B) is equal to ______.


If A and B are independent events, then A′ and B′ are also independent


One card is drawn at random from a well-shuffled deck of 52 cards. In which of the following case is the events E and F independent?

E : ‘the card drawn is black’

F : ‘the card drawn is a king’


The probability of obtaining an even prime number on each die when a pair of dice is rolled is


Two cards are drawn at random and without replacement from a pack of 52 playing cards. Find the probability that both the cards are black.


Events A and Bare such that P(A) = `1/2`, P(B) = `7/12` and `P(barA ∪ barB) = 1/4`. Find whether the events A and B are independent or not.


Let Bi(i = 1, 2, 3) be three independent events in a sample space. The probability that only B1 occur is α, only B2 occurs is β and only B3 occurs is γ. Let p be the probability that none of the events Bi occurs and these 4 probabilities satisfy the equations (α – 2β)p = αβ and (β – 3γ) = 2βy (All the probabilities are assumed to lie in the interval (0, 1)). Then `("P"("B"_1))/("P"("B"_3))` is equal to ______.


A problem in Mathematics is given to three students whose chances of solving it are `1/2, 1/3, 1/4` respectively. If the events of their solving the problem are independent then the probability that the problem will be solved, is ______.


The probability of the event A occurring is `1/3` and of the event B occurring is `1/2`. If A and B are independent events, then find the probability of neither A nor B occurring.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×