Advertisements
Advertisements
Question
A problem in Mathematics is given to three students whose chances of solving it are `1/2, 1/3, 1/4` respectively. If the events of their solving the problem are independent then the probability that the problem will be solved, is ______.
Options
`1/4`
`1/3`
`1/2`
`3/4`
Solution 1
A problem in Mathematics is given to three students whose chances of solving it are `1/2, 1/3, 1/4` respectively. If the events of their solving the problem are independent then the probability that the problem will be solved, is `underlinebb(3/4)`.
Explanation:
Let A, B, C be the respective events of solving the problem.
Then, P(A) = `1/2`, P(B) = `1/3` and P(C) = `1/4`.
Here, A, B, C are independent events.
Problem is solved if at least one of them solves the problem.
Required probability is
= P(A ∪ B ∪ C)
= `1 - P(overlineA)P(overlineB)P(overlineC)`
= `1 - (1 - 1/2)(1 - 1/3)(1 - 1/4)`
= `1 - 1/4`
= `3/4`.
Solution 2
A problem in Mathematics is given to three students whose chances of solving it are `1/2, 1/3, 1/4` respectively. If the events of their solving the problem are independent then the probability that the problem will be solved, is `underlinebb(3/4)`.
Explanation:
The problem will be solved if one or more of them can solve the problem.
The probability is
`P(Aoverline(BC)) + P(overlineABoverlineC) + P(overline(AB)C) + P(ABoverlineC) + P(AoverlineBC) + P(overlineABC) + P(ABC)`
= `1/2. 2/3. 3/4 + 1/2. 1/3. 3/4 + 1/2 . 2/3. 1/4 + 1/2. 1/3. 3/4 + 1/2. 2/3. 1/4 + 1/2. 1/3. 1/4 + 1/2. 1/3. 1/4`
= `3/4`.
Solution 3
A problem in Mathematics is given to three students whose chances of solving it are `1/2, 1/3, 1/4` respectively. If the events of their solving the problem are independent then the probability that the problem will be solved, is `underlinebb(3/4)`.
Explanation:
Let us think quantitively.
Let us assume that there are 100 questions given to A.
A solves `1/2 xx 100` = 50 questions then remaining 50 questions is given to B and B solves `50 xx 1/3` = 16.67 questions.
Remaining `50 xx 2/3` questions is given to C and C solves `50 xx 2/3 xx 1/4` = 8.33 questions.
Therefore, number of questions solved is 50 + 16.67 + 8.33 = 75.
So, required probability is `75/100 = 3/4`.
APPEARS IN
RELATED QUESTIONS
If A and B are two independent events such that `P(barA∩ B) =2/15 and P(A ∩ barB) = 1/6`, then find P(A) and P(B).
A die, whose faces are marked 1, 2, 3 in red and 4, 5, 6 in green is tossed. Let A be the event "number obtained is even" and B be the event "number obtained is red". Find if A and B are independent events.
A fair coin and an unbiased die are tossed. Let A be the event ‘head appears on the coin’ and B be the event ‘3 on the die’. Check whether A and B are independent events or not.
Let E and F be events with `P(E) = 3/5, P(F) = 3/10 and P(E ∩ F) = 1/5`. Are E and F independent?
Let A and B be independent events with P (A) = 0.3 and P (B) = 0.4. Find
- P (A ∩ B)
- P (A ∪ B)
- P (A | B)
- P (B | A)
Two events, A and B, will be independent if ______.
The probabilities of solving a specific problem independently by A and B are `1/3` and `1/5` respectively. If both try to solve the problem independently, find the probability that the problem is solved.
The odds against a certain event are 5: 2 and odds in favour of another independent event are 6: 5. Find the chance that at least one of the events will happen.
The odds against a husband who is 55 years old living till he is 75 is 8: 5 and it is 4: 3 against his wife who is now 48, living till she is 68. Find the probability that at least one of them will be alive 20 years hence.
A, B, and C try to hit a target simultaneously but independently. Their respective probabilities of hitting the target are `3/4, 1/2` and `5/8`. Find the probability that the target
- is hit exactly by one of them
- is not hit by any one of them
- is hit
- is exactly hit by two of them
Two hundred patients who had either Eye surgery or Throat surgery were asked whether they were satisfied or unsatisfied regarding the result of their surgery
The follwoing table summarizes their response:
Surgery | Satisfied | Unsatisfied | Total |
Throat | 70 | 25 | 95 |
Eye | 90 | 15 | 105 |
Total | 160 | 40 | 200 |
If one person from the 200 patients is selected at random, determine the probability that person was unsatisfied given that the person had eye surgery
A bag contains 3 yellow and 5 brown balls. Another bag contains 4 yellow and 6 brown balls. If one ball is drawn from each bag, what is the probability that, both the balls are of the same color?
A bag contains 3 yellow and 5 brown balls. Another bag contains 4 yellow and 6 brown balls. If one ball is drawn from each bag, what is the probability that, the balls are of different color?
A family has two children. Find the probability that both the children are girls, given that atleast one of them is a girl.
Solve the following:
Let A and B be independent events with P(A) = `1/4`, and P(A ∪ B) = 2P(B) – P(A). Find `"P"("A"/"B")`
Solve the following:
Let A and B be independent events with P(A) = `1/4`, and P(A ∪ B) = 2P(B) – P(A). Find `"P"("B'"/"A")`
The probability of simultaneous occurrence of at least one of two events A and B is p. If the probability that exactly one of A, B occurs is q, then prove that P(A′) + P(B′) = 2 – 2p + q.
10% of the bulbs produced in a factory are of red colour and 2% are red and defective. If one bulb is picked up at random, determine the probability of its being defective if it is red.
If A and B are independent events such that P(A) = p, P(B) = 2p and P(Exactly one of A, B) = `5/9`, then p = ______.
If A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A/B) = `1/4`, P(A' ∩ B') equals ______.
If A and B are two events such that P(B) = `3/5`, P(A|B) = `1/2` and P(A ∪ B) = `4/5`, then P(A) equals ______.
If A and B are such events that P(A) > 0 and P(B) ≠ 1, then P(A′|B′) equals ______.
If A and B are two independent events with P(A) = `3/5` and P(B) = `4/9`, then P(A′ ∩ B′) equals ______.
Two independent events are always mutually exclusive.
If A and B are two events such that P(A|B) = p, P(A) = p, P(B) = `1/3` and P(A ∪ B) = `5/9`, then p = ______.
One card is drawn at random from a well-shuffled deck of 52 cards. In which of the following case is the events E and F independent?
E : ‘the card drawn is black’
F : ‘the card drawn is a king’
Let A and B be independent events P(A) = 0.3 and P(B) = 0.4. Find P(A ∩ B)
Events A and Bare such that P(A) = `1/2`, P(B) = `7/12` and `P(barA ∪ barB) = 1/4`. Find whether the events A and B are independent or not.
Five fair coins are tossed simultaneously. The probability of the events that at least one head comes up is ______.