हिंदी

One card is drawn at random from a well-shuffled deck of 52 cards. In which of the following case is the events E and F independent? E : ‘the card drawn is a king or queen’ F : ‘the card drawn is - Mathematics

Advertisements
Advertisements

प्रश्न

One card is drawn at random from a well-shuffled deck of 52 cards. In which of the following case is the events E and F independent?

E : ‘the card drawn is a king or queen’

F : ‘the card drawn is a queen or jack’

योग

उत्तर

In a deck of 52 cards, 4 cards are kings, 4 cards are queens, and 4 cards are jacks.

∴ P(E) = P(the card drawn is a king or a queen) = `8/52 = 2/13`

∴ P(F) = P(the card drawn is a queen or a jack) = `8/52 = 2/13`

There are 4 cards which are king or queen and queen or jack.

∴ P(EF) = P(the card drawn is a king or a queen, or queen or a jack) = `4/52 = 1/13`

P(E) × P(F) = `2/13 * 2/13 = 4/169 ne 1/13`

⇒ P(E) · P(F) ≠ P(EF)

Therefore, the given events E and F are not independent.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Probability - Exercise 13.2 [पृष्ठ ५४७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 13 Probability
Exercise 13.2 | Q 15. (iii) | पृष्ठ ५४७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

A speaks truth in 60% of the cases, while B in 90% of the cases. In what percent of cases are they likely to contradict each other in stating the same fact? In the cases of contradiction do you think, the statement of B will carry more weight as he speaks truth in more number of cases than A?


If `P(A)  = 3/5 and P(B) = 1/5` , find P (A ∩ B) if A and B are independent events.


Events A and B are such that `P(A) = 1/2, P(B) = 7/12 and P("not A or not B") = 1/4` . State whether A and B are independent?


One-shot is fired from each of the three guns. Let A, B, and C denote the events that the target is hit by the first, second and third guns respectively. assuming that A, B, and C are independent events and that P(A) = 0.5, P(B) = 0.6, and P(C) = 0.8, then find the probability that at least one hit is registered.


The odds against a husband who is 55 years old living till he is 75 is 8: 5 and it is 4: 3 against his wife who is now 48, living till she is 68. Find the probability that the couple will be alive 20 years hence.


The odds against student X solving a business statistics problem are 8: 6 and odds in favour of student Y solving the same problem are 14: 16 What is the probability that neither solves the problem?


A bag contains 3 yellow and 5 brown balls. Another bag contains 4 yellow and 6 brown balls. If one ball is drawn from each bag, what is the probability that, the balls are of different color?


Select the correct option from the given alternatives :

The odds against an event are 5:3 and the odds in favour of another independent event are 7:5. The probability that at least one of the two events will occur is


Solve the following:

If P(A ∩ B) = `1/2`, P(B ∩ C) = `1/3`, P(C ∩ A) = `1/6` then find P(A), P(B) and P(C), If A,B,C are independent events.


Solve the following:

Let A and B be independent events with P(A) = `1/4`, and P(A ∪ B) = 2P(B) – P(A). Find `"P"("A"/"B")`


If A and B are independent events such that 0 < P(A) < 1 and 0 < P(B) < 1, then which of the following is not correct?


Two dice are thrown together and the total score is noted. The events E, F and G are ‘a total of 4’, ‘a total of 9 or more’, and ‘a total divisible by 5’, respectively. Calculate P(E), P(F) and P(G) and decide which pairs of events, if any, are independent.


A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("A'"/"B")`


A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("A'"/"B'")`


Let E1 and E2 be two independent events such that P(E1) = P1 and P(E2) = P2. Describe in words of the events whose probabilities are: 1 – (1 – P1)(1 – P2


Let E1 and E2 be two independent events such that P(E1) = P1 and P(E2) = P2. Describe in words of the events whose probabilities are: P1 + P2 – 2P1P2 


If A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A/B) = `1/4`, P(A' ∩ B') equals ______.


A and B are events such that P(A) = 0.4, P(B) = 0.3 and P(A ∪ B) = 0.5. Then P(B′ ∩ A) equals ______.


If A and B are two events such that P(B) = `3/5`, P(A|B) = `1/2` and P(A ∪ B) = `4/5`, then P(A) equals ______.


In Question 64 above, P(B|A′) is equal to ______.


If A and B are such events that P(A) > 0 and P(B) ≠ 1, then P(A′|B′) equals ______.


Let A and B be two events such that P(A) = `3/8`, P(B) = `5/8` and P(A ∪ B) = `3/4`. Then P(A|B).P(A′|B) is equal to ______.


Two events E and F are independent. If P(E) = 0.3, P(E ∪ F) = 0.5, then P(E|F) – P(F|E) equals ______.


Two independent events are always mutually exclusive.


If A and B are two independent events then P(A and B) = P(A).P(B).


If A and B are independent, then P(exactly one of A, B occurs) = P(A)P(B') + P(B)P(A') 


If A and B are two events such that P(A) > 0 and P(A) + P(B) >1, then P(B|A) ≥ `1 - ("P"("B'"))/("P"("A"))`


One card is drawn at random from a well-shuffled deck of 52 cards. In which of the following case is the events E and F independent?

E : ‘the card drawn is a spade’

F : ‘the card drawn is an ace’


Two events 'A' and 'B' are said to be independent if


Two cards are drawn at random and without replacement from a pack of 52 playing cards. Find the probability that both the cards are black.


Let A and B be independent events P(A) = 0.3 and P(B) = 0.4. Find P(A ∩ B)


Let EC denote the complement of an event E. Let E1, E2 and E3 be any pairwise independent events with P(E1) > 0 and P(E1 ∩ E2 ∩ E3) = 0. Then `"P"(("E"_2^"C"  ∩ "E"_3^"C")/"E"_1)` is equal to ______.


Five fair coins are tossed simultaneously. The probability of the events that at least one head comes up is ______.


Given two events A and B such that (A/B) = 0.25 and P(A ∩ B) = 0.12. The value P(A ∩ B') is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×