हिंदी

A and B are two events such that P(A) = 12, P(B) = 13 and P(A ∩ B) = 14. Find: PA'BP(A'B) - Mathematics

Advertisements
Advertisements

प्रश्न

A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("A'"/"B")`

योग

उत्तर

We have P(A) = `1/2`

P(B) = `1/3` 

And P(A ∩ B) = `1/4`

P(A') = `1 - 1/2 = 1/2`

P(B') = `1 - 1/3 = 2/3`

P(A' ∩ B') = 1 – P(A ∪ B)

= 1 – [P(A) + P(B) – P(A ∩ B)]

= `1 - [1/2 + 1/3 - 1/4]`

= `1 - [(6 + 4 + 3)/12]`

= `1 - 7/12`

= `5/12`

`"P"("A'"/"B") = ("P"("A'" ∩ "B"))/("P"("B"))`

=  `("P"("B") - "P"("A" ∩ "B"))/("P"("B"))`

= `1 - ("P"("A" ∩ "B"))/("P"("B"))`

= `1 - (1/4)/(1/3)`

= `1 - 3/4`

= `1/4`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Probability - Exercise [पृष्ठ २७२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 13 Probability
Exercise | Q 7. (iii) | पृष्ठ २७२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

A speaks truth in 60% of the cases, while B in 90% of the cases. In what percent of cases are they likely to contradict each other in stating the same fact? In the cases of contradiction do you think, the statement of B will carry more weight as he speaks truth in more number of cases than A?


A die, whose faces are marked 1, 2, 3 in red and 4, 5, 6 in green is tossed. Let A be the event "number obtained is even" and B be the event "number obtained is red". Find if A and B are independent events.


If `P(A)  = 3/5 and P(B) = 1/5` , find P (A ∩ B) if A and B are independent events.


A fair coin and an unbiased die are tossed. Let A be the event ‘head appears on the coin’ and B be the event ‘3 on the die’. Check whether A and B are independent events or not.


Events A and B are such that `P(A) = 1/2, P(B) = 7/12 and P("not A or not B") = 1/4` . State whether A and B are independent?


Prove that if E and F are independent events, then the events E and F' are also independent. 


The probabilities of solving a specific problem independently by A and B are `1/3` and `1/5` respectively. If both try to solve the problem independently, find the probability that the problem is solved.


One-shot is fired from each of the three guns. Let A, B, and C denote the events that the target is hit by the first, second and third guns respectively. assuming that A, B, and C are independent events and that P(A) = 0.5, P(B) = 0.6, and P(C) = 0.8, then find the probability that at least one hit is registered.


The odds against student X solving a business statistics problem are 8: 6 and odds in favour of student Y solving the same problem are 14: 16 What is the chance that the problem will be solved, if they try independently?


Bag A contains 3 red and 2 white balls and bag B contains 2 red and 5 white balls. A bag is selected at random, a ball is drawn and put into the other bag, and then a ball is drawn from that bag. Find the probability that both the balls drawn are of same color


A family has two children. Find the probability that both the children are girls, given that atleast one of them is a girl.


Solve the following:

If P(A) = `"P"("A"/"B") = 1/5, "P"("B"/"A") = 1/3` the find `"P"("B'"/"A'")`


If A and B are independent events such that 0 < P(A) < 1 and 0 < P(B) < 1, then which of the following is not correct?


Refer to Question 1 above. If the die were fair, determine whether or not the events A and B are independent.


A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("A"/"B")`


Three events A, B and C have probabilities `2/5, 1/3` and `1/2`, , respectively. Given that P(A ∩ C) = `1/5` and P(B ∩ C) = `1/4`, find the values of P(C|B) and P(A' ∩ C').


Let E1 and E2 be two independent events such that P(E1) = P1 and P(E2) = P2. Describe in words of the events whose probabilities are: P1P2 


Let E1 and E2 be two independent events such that P(E1) = P1 and P(E2) = P2. Describe in words of the events whose probabilities are: 1 – (1 – P1)(1 – P2


A and B are events such that P(A) = 0.4, P(B) = 0.3 and P(A ∪ B) = 0.5. Then P(B′ ∩ A) equals ______.


If A and B are two events such that P(B) = `3/5`, P(A|B) = `1/2` and P(A ∪ B) = `4/5`, then P(A) equals ______.


If A and B are such events that P(A) > 0 and P(B) ≠ 1, then P(A′|B′) equals ______.


If A and B are two independent events with P(A) = `3/5` and P(B) = `4/9`, then P(A′ ∩ B′) equals ______.


Let P(A) > 0 and P(B) > 0. Then A and B can be both mutually exclusive and independent.


If A and B′ are independent events, then P(A' ∪ B) = 1 – P (A) P(B')


One card is drawn at random from a well-shuffled deck of 52 cards. In which of the following case is the events E and F independent?

E : ‘the card drawn is a spade’

F : ‘the card drawn is an ace’


Five fair coins are tossed simultaneously. The probability of the events that at least one head comes up is ______.


A problem in Mathematics is given to three students whose chances of solving it are `1/2, 1/3, 1/4` respectively. If the events of their solving the problem are independent then the probability that the problem will be solved, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×