Advertisements
Advertisements
प्रश्न
A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("A'"/"B")`
उत्तर
We have P(A) = `1/2`
P(B) = `1/3`
And P(A ∩ B) = `1/4`
P(A') = `1 - 1/2 = 1/2`
P(B') = `1 - 1/3 = 2/3`
P(A' ∩ B') = 1 – P(A ∪ B)
= 1 – [P(A) + P(B) – P(A ∩ B)]
= `1 - [1/2 + 1/3 - 1/4]`
= `1 - [(6 + 4 + 3)/12]`
= `1 - 7/12`
= `5/12`
`"P"("A'"/"B") = ("P"("A'" ∩ "B"))/("P"("B"))`
= `("P"("B") - "P"("A" ∩ "B"))/("P"("B"))`
= `1 - ("P"("A" ∩ "B"))/("P"("B"))`
= `1 - (1/4)/(1/3)`
= `1 - 3/4`
= `1/4`
APPEARS IN
संबंधित प्रश्न
A speaks truth in 60% of the cases, while B in 90% of the cases. In what percent of cases are they likely to contradict each other in stating the same fact? In the cases of contradiction do you think, the statement of B will carry more weight as he speaks truth in more number of cases than A?
Let E and F be events with `P(E) = 3/5, P(F) = 3/10 and P(E ∩ F) = 1/5`. Are E and F independent?
Given that the events A and B are such that `P(A) = 1/2, PA∪B=3/5 and P (B) = p`. Find p if they are
- mutually exclusive
- independent.
Prove that if E and F are independent events, then the events E and F' are also independent.
A speaks the truth in 60% of the cases, while B is 40% of the cases. In what percent of cases are they likely to contradict each other in stating the same fact?
The probabilities of solving a specific problem independently by A and B are `1/3` and `1/5` respectively. If both try to solve the problem independently, find the probability that the problem is solved.
A problem in statistics is given to three students A, B, and C. Their chances of solving the problem are `1/3`, `1/4`, and `1/5` respectively. If all of them try independently, what is the probability that, problem is solved?
A problem in statistics is given to three students A, B, and C. Their chances of solving the problem are `1/3`, `1/4`, and `1/5` respectively. If all of them try independently, what is the probability that, exactly two students solve the problem?
One-shot is fired from each of the three guns. Let A, B, and C denote the events that the target is hit by the first, second and third guns respectively. assuming that A, B, and C are independent events and that P(A) = 0.5, P(B) = 0.6, and P(C) = 0.8, then find the probability that at least one hit is registered.
The odds against a certain event are 5: 2 and odds in favour of another independent event are 6: 5. Find the chance that at least one of the events will happen.
Two hundred patients who had either Eye surgery or Throat surgery were asked whether they were satisfied or unsatisfied regarding the result of their surgery.
The following table summarizes their response:
Surgery | Satisfied | Unsatisfied | Total |
Throat | 70 | 25 | 95 |
Eye | 90 | 15 | 105 |
Total | 160 | 40 | 200 |
If one person from the 200 patients is selected at random, determine the probability the person had Throat surgery given that the person was unsatisfied.
Two dice are thrown together. Let A be the event 'getting 6 on the first die' and B be the event 'getting 2 on the second die'. Are the events A and B independent?
Solve the following:
If P(A ∩ B) = `1/2`, P(B ∩ C) = `1/3`, P(C ∩ A) = `1/6` then find P(A), P(B) and P(C), If A,B,C are independent events.
Solve the following:
A and B throw a die alternatively till one of them gets a 3 and wins the game. Find the respective probabilities of winning. (Assuming A begins the game)
Three events A, B and C are said to be independent if P(A ∩ B ∩ C) = P(A) P(B) P(C).
For a loaded die, the probabilities of outcomes are given as under:
P(1) = P(2) = 0.2, P(3) = P(5) = P(6) = 0.1 and P(4) = 0.3. The die is thrown two times. Let A and B be the events, ‘same number each time’, and ‘a total score is 10 or more’, respectively. Determine whether or not A and B are independent.
A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("A"/"B")`
Let E1 and E2 be two independent events such that P(E1) = P1 and P(E2) = P2. Describe in words of the events whose probabilities are: (1 – P1) P2
Let E1 and E2 be two independent events such that P(E1) = P1 and P(E2) = P2. Describe in words of the events whose probabilities are: P1 + P2 – 2P1P2
If A and B are such events that P(A) > 0 and P(B) ≠ 1, then P(A′|B′) equals ______.
If the events A and B are independent, then P(A ∩ B) is equal to ______.
If A and B are mutually exclusive events, then they will be independent also.
Let A and B be two events. If P(A | B) = P(A), then A is ______ of B.
One card is drawn at random from a well-shuffled deck of 52 cards. In which of the following case is the events E and F independent?
E : ‘the card drawn is a spade’
F : ‘the card drawn is an ace’
If P(A) = `3/5` and P(B) = `1/5`, find P(A ∩ B), If A and B are independent events.
Two cards are drawn at random and without replacement from a pack of 52 playing cards. Find the probability that both the cards are black.
Let A and B be independent events P(A) = 0.3 and P(B) = 0.4. Find P(A ∩ B)
Given two independent events, if the probability that exactly one of them occurs is `26/49` and the probability that none of them occurs is `15/49`, then the probability of more probable of the two events is ______.