मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Solve the following: If P(A ∩ B) = 12, P(B ∩ C) = 13, P(C ∩ A) = 16 then find P(A), P(B) and P(C), If A,B,C are independent events. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following:

If P(A ∩ B) = `1/2`, P(B ∩ C) = `1/3`, P(C ∩ A) = `1/6` then find P(A), P(B) and P(C), If A,B,C are independent events.

बेरीज

उत्तर

Since A and B are independent events,

P(A ∩ B) = P(A) · P(B)

∴ P(A) P(B) = `1/2`   ...(i)

B and C are independent events.

∴ P(B ∩ C) = P(B) · P(C)

∴ P(B) P(C) = `1/3`   ...(ii)

A and C are independent events.

∴ P(A ∩ C) = P(A) · P(C)

∴ P(A) P(C) = `1/6`  ...(iii)

Dividing (i) by (ii), we get

`("P"("A") * "P"("B"))/("P"("B") * "P"("C")) = (1/2)/(1/3)`

∴ P(A) = `3/2` P(C)   ...(iv)

Substituting equation (iv) in (iii), we get

`3/2`P(C) · P(C) = `1/6`

∴ [P(C)]2 = `1/9`

∴ P(C) = `1/3`

Substituting P(C) = `1/3` in equation (ii), we get P(B) = 1

Substituting P(B) = 1 in equation (i), we get P(A) = `1/2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Probability - Miscellaneous Exercise 9 [पृष्ठ २१३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 9 Probability
Miscellaneous Exercise 9 | Q II. (4) | पृष्ठ २१३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

A die, whose faces are marked 1, 2, 3 in red and 4, 5, 6 in green is tossed. Let A be the event "number obtained is even" and B be the event "number obtained is red". Find if A and B are independent events.


If A and B are two events such that `P(A) = 1/4, P(B) = 1/2 and P(A ∩ B) = 1/8`, find P (not A and not B).


Probability of solving specific problem independently by A and B are `1/2` and `1/3` respectively. If both try to solve the problem independently, find the probability that

  1. the problem is solved
  2. exactly one of them solves the problem.

In a race, the probabilities of A and B winning the race are `1/3` and `1/6` respectively. Find the probability of neither of them winning the race.


A speaks the truth in 60% of the cases, while B is 40% of the cases. In what percent of cases are they likely to contradict each other in stating the same fact?


One-shot is fired from each of the three guns. Let A, B, and C denote the events that the target is hit by the first, second and third guns respectively. assuming that A, B, and C are independent events and that P(A) = 0.5, P(B) = 0.6, and P(C) = 0.8, then find the probability that at least one hit is registered.


The odds against a certain event are 5: 2 and odds in favour of another independent event are 6: 5. Find the chance that at least one of the events will happen.


The odds against student X solving a business statistics problem are 8: 6 and odds in favour of student Y solving the same problem are 14: 16 What is the chance that the problem will be solved, if they try independently?


The odds against student X solving a business statistics problem are 8: 6 and odds in favour of student Y solving the same problem are 14: 16 What is the probability that neither solves the problem?


A, B, and C try to hit a target simultaneously but independently. Their respective probabilities of hitting the target are `3/4, 1/2` and `5/8`. Find the probability that the target

  1. is hit exactly by one of them
  2. is not hit by any one of them
  3. is hit
  4. is exactly hit by two of them

Solve the following:

If P(A) = `"P"("A"/"B") = 1/5, "P"("B"/"A") = 1/3` the find `"P"("A'"/"B")`


Solve the following:

If P(A) = `"P"("A"/"B") = 1/5, "P"("B"/"A") = 1/3` the find `"P"("B'"/"A'")`


Solve the following:

Let A and B be independent events with P(A) = `1/4`, and P(A ∪ B) = 2P(B) – P(A). Find P(B)


Solve the following:

Let A and B be independent events with P(A) = `1/4`, and P(A ∪ B) = 2P(B) – P(A). Find `"P"("B'"/"A")`


Solve the following:

Find the probability that a year selected will have 53 Wednesdays


Solve the following:

A and B throw a die alternatively till one of them gets a 3 and wins the game. Find the respective probabilities of winning. (Assuming A begins the game)


Solve the following:

A machine produces parts that are either good (90%), slightly defective (2%), or obviously defective (8%). Produced parts get passed through an automatic inspection machine, which is able to detect any part that is obviously defective and discard it. What is the quality of the parts that make it throught the inspection machine and get shipped?


The probability of simultaneous occurrence of at least one of two events A and B is p. If the probability that exactly one of A, B occurs is q, then prove that P(A′) + P(B′) = 2 – 2p + q.


If A and B′ are independent events then P(A′ ∪ B) = 1 – ______.


Let A and B be two independent events. Then P(A ∩ B) = P(A) + P(B)


Two dice are thrown together and the total score is noted. The events E, F and G are ‘a total of 4’, ‘a total of 9 or more’, and ‘a total divisible by 5’, respectively. Calculate P(E), P(F) and P(G) and decide which pairs of events, if any, are independent.


A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("A'"/"B'")`


Let E1 and E2 be two independent events such that P(E1) = P1 and P(E2) = P2. Describe in words of the events whose probabilities are: P1P2 


If A and B are two events and A ≠ Φ, B ≠ Φ, then ______.


A and B are events such that P(A) = 0.4, P(B) = 0.3 and P(A ∪ B) = 0.5. Then P(B′ ∩ A) equals ______.


If A and B are two independent events with P(A) = `3/5` and P(B) = `4/9`, then P(A′ ∩ B′) equals ______.


If A and B are mutually exclusive events, then they will be independent also.


If A and B′ are independent events, then P(A' ∪ B) = 1 – P (A) P(B')


One card is drawn at random from a well-shuffled deck of 52 cards. In which of the following case is the events E and F independent?

E : ‘the card drawn is a spade’

F : ‘the card drawn is an ace’


One card is drawn at random from a well-shuffled deck of 52 cards. In which of the following case is the events E and F independent?

E : ‘the card drawn is black’

F : ‘the card drawn is a king’


Let A and B be independent events P(A) = 0.3 and P(B) = 0.4. Find P(A ∩ B)


The probability of the event A occurring is `1/3` and of the event B occurring is `1/2`. If A and B are independent events, then find the probability of neither A nor B occurring.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×