Advertisements
Advertisements
प्रश्न
A and B are events such that P(A) = 0.4, P(B) = 0.3 and P(A ∪ B) = 0.5. Then P(B′ ∩ A) equals ______.
पर्याय
`2/3`
`1/2`
`3/10`
`1/5`
उत्तर
A and B are events such that P(A) = 0.4, P(B) = 0.3 and P(A ∪ B) = 0.5. Then P(B′ ∩ A) equals `1/5`.
Explanation:
Given that: P(A) = 0.4, P(B) = 0.3 and P(A ∪ B) = 0.5
P(A ∪ B) = P(A) + P(B) – P(A ∩ B)
0.5 = 0.4 + 0.3 – P(A ∩ B)
P(A ∩ B) = 0.4 + 0.3 – 0.5 = 0.2
∴ P(B' ∩ A) = P(A) – P(A ∩ B)
= 0.4 – 0.2
= 0.2
= `1/5`
APPEARS IN
संबंधित प्रश्न
If A and B are two independent events such that `P(barA∩ B) =2/15 and P(A ∩ barB) = 1/6`, then find P(A) and P(B).
Given that the events A and B are such that `P(A) = 1/2, PA∪B=3/5 and P (B) = p`. Find p if they are
- mutually exclusive
- independent.
If A and B are two events such that `P(A) = 1/4, P(B) = 1/2 and P(A ∩ B) = 1/8`, find P (not A and not B).
Events A and B are such that `P(A) = 1/2, P(B) = 7/12 and P("not A or not B") = 1/4` . State whether A and B are independent?
A problem in statistics is given to three students A, B, and C. Their chances of solving the problem are `1/3`, `1/4`, and `1/5` respectively. If all of them try independently, what is the probability that, problem is not solved
The probability that a 50-year old man will be alive till age 60 is 0.83 and the probability that a 45-year old woman will be alive till age 55 is 0.97. What is the probability that a man whose age is 50 and his wife whose age is 45 will both be alive after 10 years?
The odds against student X solving a business statistics problem are 8: 6 and odds in favour of student Y solving the same problem are 14: 16 What is the chance that the problem will be solved, if they try independently?
A, B, and C try to hit a target simultaneously but independently. Their respective probabilities of hitting the target are `3/4, 1/2` and `5/8`. Find the probability that the target
- is hit exactly by one of them
- is not hit by any one of them
- is hit
- is exactly hit by two of them
Two hundred patients who had either Eye surgery or Throat surgery were asked whether they were satisfied or unsatisfied regarding the result of their surgery.
The following table summarizes their response:
Surgery | Satisfied | Unsatisfied | Total |
Throat | 70 | 25 | 95 |
Eye | 90 | 15 | 105 |
Total | 160 | 40 | 200 |
If one person from the 200 patients is selected at random, determine the probability the person had Throat surgery given that the person was unsatisfied.
A bag contains 3 yellow and 5 brown balls. Another bag contains 4 yellow and 6 brown balls. If one ball is drawn from each bag, what is the probability that, both the balls are of the same color?
Select the correct option from the given alternatives :
The odds against an event are 5:3 and the odds in favour of another independent event are 7:5. The probability that at least one of the two events will occur is
Solve the following:
If P(A) = `"P"("A"/"B") = 1/5, "P"("B"/"A") = 1/3` the find `"P"("A'"/"B")`
Solve the following:
Let A and B be independent events with P(A) = `1/4`, and P(A ∪ B) = 2P(B) – P(A). Find `"P"("B'"/"A")`
Solve the following:
A and B throw a die alternatively till one of them gets a 3 and wins the game. Find the respective probabilities of winning. (Assuming A begins the game)
Two dice are thrown together. Let A be the event ‘getting 6 on the first die’ and B be the event ‘getting 2 on the second die’. Are the events A and B independent?
If A and B′ are independent events then P(A′ ∪ B) = 1 – ______.
If A and B are two events and A ≠ Φ, B ≠ Φ, then ______.
If A and B are two independent events with P(A) = `3/5` and P(B) = `4/9`, then P(A′ ∩ B′) equals ______.
If A and B are two independent events with P(A) = `3/5` and P(B) = `4/9`, then P(A′ ∩ B′) equals ______.
If the events A and B are independent, then P(A ∩ B) is equal to ______.
If A and B are independent events, then A′ and B′ are also independent
If A and B are two independent events then P(A and B) = P(A).P(B).
If A and B′ are independent events, then P(A' ∪ B) = 1 – P (A) P(B')
If A and B are independent, then P(exactly one of A, B occurs) = P(A)P(B') + P(B)P(A')
If A, B are two events such that `1/8 ≤ P(A ∩ B) ≤ 3/8` then
Let Bi(i = 1, 2, 3) be three independent events in a sample space. The probability that only B1 occur is α, only B2 occurs is β and only B3 occurs is γ. Let p be the probability that none of the events Bi occurs and these 4 probabilities satisfy the equations (α – 2β)p = αβ and (β – 3γ) = 2βy (All the probabilities are assumed to lie in the interval (0, 1)). Then `("P"("B"_1))/("P"("B"_3))` is equal to ______.
Given two independent events, if the probability that exactly one of them occurs is `26/49` and the probability that none of them occurs is `15/49`, then the probability of more probable of the two events is ______.
A problem in Mathematics is given to three students whose chances of solving it are `1/2, 1/3, 1/4` respectively. If the events of their solving the problem are independent then the probability that the problem will be solved, is ______.