Advertisements
Advertisements
प्रश्न
The probability that a 50-year old man will be alive till age 60 is 0.83 and the probability that a 45-year old woman will be alive till age 55 is 0.97. What is the probability that a man whose age is 50 and his wife whose age is 45 will both be alive after 10 years?
उत्तर
Let A be the event that man will be alive at 60.
∴ P(A) = 0.83
Let B be the event that woman will be alive at 55.
∴ P(B) = 0.97
A ∩ B = Event that both will be alive.
Also, A and B are independent events
∴ P(both man and his wife will be alive)
= P(A ∩ B)
= P(A) · P(B)
= 0.83 × 0.97
= 0.8051
APPEARS IN
संबंधित प्रश्न
If `P(A) = 3/5 and P(B) = 1/5` , find P (A ∩ B) if A and B are independent events.
Events A and B are such that `P(A) = 1/2, P(B) = 7/12 and P("not A or not B") = 1/4` . State whether A and B are independent?
In a race, the probabilities of A and B winning the race are `1/3` and `1/6` respectively. Find the probability of neither of them winning the race.
A fair die is rolled. If face 1 turns up, a ball is drawn from Bag A. If face 2 or 3 turns up, a ball is drawn from Bag B. If face 4 or 5 or 6 turns up, a ball is drawn from Bag C. Bag A contains 3 red and 2 white balls, Bag B contains 3 red and 4 white balls and Bag C contains 4 red and 5 white balls. The die is rolled, a Bag is picked up and a ball is drawn. If the drawn ball is red; what is the probability that it is drawn from Bag B?
One-shot is fired from each of the three guns. Let A, B, and C denote the events that the target is hit by the first, second and third guns respectively. assuming that A, B, and C are independent events and that P(A) = 0.5, P(B) = 0.6, and P(C) = 0.8, then find the probability that at least one hit is registered.
The odds against a certain event are 5: 2 and odds in favour of another independent event are 6: 5. Find the chance that at least one of the events will happen.
The odds against student X solving a business statistics problem are 8: 6 and odds in favour of student Y solving the same problem are 14: 16 What is the probability that neither solves the problem?
Two hundred patients who had either Eye surgery or Throat surgery were asked whether they were satisfied or unsatisfied regarding the result of their surgery.
The following table summarizes their response:
Surgery | Satisfied | Unsatisfied | Total |
Throat | 70 | 25 | 95 |
Eye | 90 | 15 | 105 |
Total | 160 | 40 | 200 |
If one person from the 200 patients is selected at random, determine the probability the person had Throat surgery given that the person was unsatisfied.
A bag contains 3 red and 5 white balls. Two balls are drawn at random one after the other without replacement. Find the probability that both the balls are white.
Solution: Let,
A : First ball drawn is white
B : second ball drawn in white.
P(A) = `square/square`
After drawing the first ball, without replacing it into the bag a second ball is drawn from the remaining `square` balls.
∴ P(B/A) = `square/square`
∴ P(Both balls are white) = P(A ∩ B)
`= "P"(square) * "P"(square)`
`= square * square`
= `square`
Solve the following:
Find the probability that a year selected will have 53 Wednesdays
A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("A'"/"B'")`
A and B are events such that P(A) = 0.4, P(B) = 0.3 and P(A ∪ B) = 0.5. Then P(B′ ∩ A) equals ______.
If A and B are two independent events with P(A) = `3/5` and P(B) = `4/9`, then P(A′ ∩ B′) equals ______.
Let A and B be two events such that P(A) = `3/8`, P(B) = `5/8` and P(A ∪ B) = `3/4`. Then P(A|B).P(A′|B) is equal to ______.
If the events A and B are independent, then P(A ∩ B) is equal to ______.
If A, B and C are three independent events such that P(A) = P(B) = P(C) = p, then P(At least two of A, B, C occur) = 3p2 – 2p3
Let A and B be two events. If P(A | B) = P(A), then A is ______ of B.
One card is drawn at random from a well-shuffled deck of 52 cards. In which of the following case is the events E and F independent?
E : ‘the card drawn is black’
F : ‘the card drawn is a king’
Given two independent events A and B such that P(A) = 0.3, P(B) = 0.6 and P(A' ∩ B') is ______.