Advertisements
Advertisements
प्रश्न
If A and B are two independent events with P(A) = `3/5` and P(B) = `4/9`, then P(A′ ∩ B′) equals ______.
पर्याय
`4/15`
`8/45`
`1/3`
`2/9`
उत्तर
If A and B are two independent events with P(A) = `3/5` and P(B) = `4/9`, then P(A′ ∩ B′) equals `2/9`.
Explanation:
Given that: A and B are independent events
Such that P(A) = `3/5`
∴ P(A') = `1 - 3/5 = 2/5`
P(B) = `4/9`
∴ P(B') = `1 - 4/9 = 5/9`
∴ P(A' ∩ B′) = P(A') . P(B')
= `2/5*5/9`
= `2/9`
APPEARS IN
संबंधित प्रश्न
Let E and F be events with `P(E) = 3/5, P(F) = 3/10 and P(E ∩ F) = 1/5`. Are E and F independent?
Given that the events A and B are such that `P(A) = 1/2, PA∪B=3/5 and P (B) = p`. Find p if they are
- mutually exclusive
- independent.
Prove that if E and F are independent events, then the events E and F' are also independent.
In a race, the probabilities of A and B winning the race are `1/3` and `1/6` respectively. Find the probability of neither of them winning the race.
The probabilities of solving a specific problem independently by A and B are `1/3` and `1/5` respectively. If both try to solve the problem independently, find the probability that the problem is solved.
The odds against student X solving a business statistics problem are 8: 6 and odds in favour of student Y solving the same problem are 14: 16 What is the probability that neither solves the problem?
Select the correct option from the given alternatives :
The odds against an event are 5:3 and the odds in favour of another independent event are 7:5. The probability that at least one of the two events will occur is
Solve the following:
Let A and B be independent events with P(A) = `1/4`, and P(A ∪ B) = 2P(B) – P(A). Find `"P"("A"/"B")`
Solve the following:
Find the probability that a year selected will have 53 Wednesdays
Solve the following:
For three events A, B and C, we know that A and C are independent, B and C are independent, A and B are disjoint, P(A ∪ C) = `2/3`, P(B ∪ C) = `3/4`, P(A ∪ B ∪ C) = `11/12`. Find P(A), P(B) and P(C)
Solve the following:
A machine produces parts that are either good (90%), slightly defective (2%), or obviously defective (8%). Produced parts get passed through an automatic inspection machine, which is able to detect any part that is obviously defective and discard it. What is the quality of the parts that make it throught the inspection machine and get shipped?
A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("B"/"A")`
A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("A'"/"B'")`
If A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A/B) = `1/4`, P(A' ∩ B') equals ______.
If A and B are two events and A ≠ Φ, B ≠ Φ, then ______.
If A and B are two events such that P(B) = `3/5`, P(A|B) = `1/2` and P(A ∪ B) = `4/5`, then P(A) equals ______.
In Question 64 above, P(B|A′) is equal to ______.
If the events A and B are independent, then P(A ∩ B) is equal to ______.
If A and B are two independent events then P(A and B) = P(A).P(B).
If A and B′ are independent events, then P(A' ∪ B) = 1 – P (A) P(B')
One card is drawn at random from a well-shuffled deck of 52 cards. In which of the following case is the events E and F independent?
E : ‘the card drawn is a spade’
F : ‘the card drawn is an ace’
The probability of obtaining an even prime number on each die when a pair of dice is rolled is
Two events 'A' and 'B' are said to be independent if
Let A and B be independent events P(A) = 0.3 and P(B) = 0.4. Find P(A ∩ B)
Given two independent events, if the probability that exactly one of them occurs is `26/49` and the probability that none of them occurs is `15/49`, then the probability of more probable of the two events is ______.
Five fair coins are tossed simultaneously. The probability of the events that at least one head comes up is ______.