Advertisements
Advertisements
प्रश्न
If A and B are such events that P(A) > 0 and P(B) ≠ 1, then P(A′|B′) equals ______.
पर्याय
1 – P(A|B)
1– P(A′|B)
`(1 - "P"("A" ∪ "B"))/("P"("B'"))`
P(A′)|P(B′)
उत्तर
If A and B are such events that P(A) > 0 and P(B) ≠ 1, then P(A′|B′) equals `(1 - "P"("A" ∪ "B"))/("P"("B'"))`.
Explanation:
Given that: P(A) > 0 and P(B) ≠ 1
∴ P(A′|B′) = `("P"("A'" ∩ "B'"))/("P"("B'"))`
= `(1 - "P"("A" ∪ "B"))/("P"("B'"))`
APPEARS IN
संबंधित प्रश्न
A card from a pack of 52 playing cards is lost. From the remaining cards of the pack three cards are drawn at random (without replacement) and are found to be all spades. Find the probability of the lost card being a spade.
A speaks truth in 60% of the cases, while B in 90% of the cases. In what percent of cases are they likely to contradict each other in stating the same fact? In the cases of contradiction do you think, the statement of B will carry more weight as he speaks truth in more number of cases than A?
Let A and B be independent events with P (A) = 0.3 and P (B) = 0.4. Find
- P (A ∩ B)
- P (A ∪ B)
- P (A | B)
- P (B | A)
Given two independent events A and B such that P (A) = 0.3, P (B) = 0.6. Find
- P (A and B)
- P(A and not B)
- P(A or B)
- P(neither A nor B)
Prove that if E and F are independent events, then the events E and F' are also independent.
The probabilities of solving a specific problem independently by A and B are `1/3` and `1/5` respectively. If both try to solve the problem independently, find the probability that the problem is solved.
The odds against student X solving a business statistics problem are 8: 6 and odds in favour of student Y solving the same problem are 14: 16 What is the probability that neither solves the problem?
Two dice are thrown together. Let A be the event 'getting 6 on the first die' and B be the event 'getting 2 on the second die'. Are the events A and B independent?
A bag contains 3 yellow and 5 brown balls. Another bag contains 4 yellow and 6 brown balls. If one ball is drawn from each bag, what is the probability that, the balls are of different color?
A family has two children. Find the probability that both the children are girls, given that atleast one of them is a girl.
Solve the following:
A machine produces parts that are either good (90%), slightly defective (2%), or obviously defective (8%). Produced parts get passed through an automatic inspection machine, which is able to detect any part that is obviously defective and discard it. What is the quality of the parts that make it throught the inspection machine and get shipped?
If A and B are independent events such that P(A) = p, P(B) = 2p and P(Exactly one of A, B) = `5/9`, then p = ______.
Three events A, B and C are said to be independent if P(A ∩ B ∩ C) = P(A) P(B) P(C).
The probability that at least one of the two events A and B occurs is 0.6. If A and B occur simultaneously with probability 0.3, evaluate `"P"(bar"A") + "P"(bar"B")`
Two dice are thrown together and the total score is noted. The events E, F and G are ‘a total of 4’, ‘a total of 9 or more’, and ‘a total divisible by 5’, respectively. Calculate P(E), P(F) and P(G) and decide which pairs of events, if any, are independent.
A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("A'"/"B")`
A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("A'"/"B'")`
Two dice are tossed. Find whether the following two events A and B are independent: A = {(x, y): x + y = 11} B = {(x, y): x ≠ 5} where (x, y) denotes a typical sample point.
If A and B are two events and A ≠ Φ, B ≠ Φ, then ______.
If A and B are two independent events with P(A) = `3/5` and P(B) = `4/9`, then P(A′ ∩ B′) equals ______.
Let P(A) > 0 and P(B) > 0. Then A and B can be both mutually exclusive and independent.
If A and B are independent events, then A′ and B′ are also independent
If A and B are mutually exclusive events, then they will be independent also.
If A and B are two events such that P(A) > 0 and P(A) + P(B) >1, then P(B|A) ≥ `1 - ("P"("B'"))/("P"("A"))`
Let A and B be two events. If P(A | B) = P(A), then A is ______ of B.
One card is drawn at random from a well-shuffled deck of 52 cards. In which of the following case is the events E and F independent?
E : ‘the card drawn is black’
F : ‘the card drawn is a king’
Given two events A and B such that (A/B) = 0.25 and P(A ∩ B) = 0.12. The value P(A ∩ B') is ______.