Advertisements
Advertisements
प्रश्न
Let P(A) = `7/13`, P(B) = `9/13` and P(A ∩ B) = `4/13`. Then P( A′|B) is equal to ______.
पर्याय
`6/13`
`4/13`
`4/9`
`5/9`
उत्तर
Let P(A) = `7/13`, P(B) = `9/13` and P(A ∩ B) = `4/13`. Then P( A′|B) is equal to `5/9`.
Explanation:
Given that: P(A) = `7/13`, P(B) = `9/13` and P(A ∩ B) = `4/13`
`"P"("A'"/"B") = ("P"("A'" ∩ "B"))/("P"("B"))`
= `("P"("B") - "P"("A" ∩ "B"))/("P"("B"))`
= `(9/13 - 4/13)/(9/13)`
= `(5/13)/(9/13)`
= `5/9`
APPEARS IN
संबंधित प्रश्न
If A and B are events such that P (A|B) = P(B|A), then ______.
In a hostel, 60% of the students read Hindi newspaper, 40% read English newspaper and 20% read both Hindi and English news papers. A student is selected at random.
If she reads Hindi news paper, find the probability that she reads English news paper.
Suppose that 5% of men and 0.25% of women have grey hair. A grey-haired person is selected at random. What is the probability of this person being male?
Assume that there are equal number of males and females.
Bag I contains 3 red and 4 black balls and Bag II contains 4 red and 5 black balls. One ball is transferred from Bag I to Bag II and then a ball is drawn from Bag II. The ball so drawn is found to be red in colour. Find the probability that the transferred ball is black.
If P (A|B) > P (A), then which of the following is correct:
If A and B are any two events such that P (A) + P (B) − P (A and B) = P (A), then ______.
A and B are two candidates seeking admission in a college. The probability that A is selected is 0.7 and the probability that exactly one of them is selected is 0.6. Find the probability that B is selected.
A factory produces bulbs. The probability that anyone bulb is defective is `1/50` and they are packed in boxes of 10. From a single box, find the probability that none of the bulbs is defective
A factory produces bulbs. The probability that anyone bulb is defective is `1/50` and they are packed in boxes of 10. From a single box, find the probability that exactly two bulbs are defective
A factory produces bulbs. The probability that anyone bulb is defective is `1/50` and they are packed in boxes of 10. From a single box, find the probability that more than 8 bulbs work properly
A shopkeeper sells three types of flower seeds A1, A2 and A3. They are sold as a mixture where the proportions are 4:4:2 respectively. The germination rates of the three types of seeds are 45%, 60% and 35%. Calculate the probability of a randomly chosen seed to germinate
A shopkeeper sells three types of flower seeds A1, A2 and A3. They are sold as a mixture where the proportions are 4:4:2 respectively. The germination rates of the three types of seeds are 45%, 60% and 35%. Calculate the probability that it will not germinate given that the seed is of type A3
If P(B) = `3/5`, P(A|B) = `1/2` and P(A∪ B) = `4/5`, then P(A∪ B)′ + P( A′ ∪ B) = ______.
Three persons, A, B and C, fire at a target in turn, starting with A. Their probability of hitting the target are 0.4, 0.3 and 0.2 respectively. The probability of two hits is ______.
The probability that a person is not a swimmer is 0.3. The probability that out of 5 persons 4 are swimmers is ______.
If A and B are such that P(A' ∪ B') = `2/3` and P(A ∪ B) = `5/9` then P(A') + P(B') = ______.
If 0 < P(A) < 1, 0 < P(B) < 1 and P(A ∪ B) = P(A) + P(B) – P(A)P(B), then
If P(A/B) > P(A), then which of the following is correct:-
Compute P(A/B) If P(B) = 0.5, P(A ∩ B) = 0.32
If P(A) = `6/11`, P(B) = `5/11` and P(A ∪ B) = `7/11`, then what will be the value of P(A ∩ B)
Given that two numbers appearing on throwing two dice are different. Find the probability of the event the sum of numbers on the dice is 4.