मराठी

A factory produces bulbs. The probability that any one bulb is defective is 150 and they are packed in boxes of 10. From a single box, find the probability that none of the bulbs is defective - Mathematics

Advertisements
Advertisements

प्रश्न

A factory produces bulbs. The probability that anyone bulb is defective is `1/50` and they are packed in boxes of 10. From a single box, find the probability that none of the bulbs is defective

बेरीज

उत्तर

Let X be the random variable denoting a bulb to be defective.

Here, n = 10

p = `1/50`

q = `1 - 1/50 = 49/50`

We know that P(X = r) = `""^"n""C"_"r" "p"^"r" "q"^("n" - "r")`

None of the bulbs is defective

i.e., r = 0

P(x = 0) = `""^10"C"_0 (1/50)^0 (49/50)^(10 - 0)`

= `(49/50)^10`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Probability - Exercise [पृष्ठ २७५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 13 Probability
Exercise | Q 31. (i) | पृष्ठ २७५

संबंधित प्रश्‍न

If A and B are events such that P (A|B) = P(B|A), then ______.


In a hostel, 60% of the students read Hindi newspaper, 40% read English newspaper and 20% read both Hindi and English news papers. A student is selected at random. 

Find the probability that she reads neither Hindi nor English news papers.


In a hostel, 60% of the students read Hindi newspaper, 40% read English newspaper and 20% read both Hindi and English news papers. A student is selected at random.

If she reads Hindi news paper, find the probability that she reads English news paper.


In a hostel, 60% of the students read Hindi newspaper, 40% read English newspaper and 20% read both Hindi and English news papers. A student is selected at random.

If she reads English news paper, find the probability that she reads Hindi news paper.


The probability of obtaining an even prime number on each die, when a pair of dice is rolled is ______.


An electronic assembly consists of two subsystems, say, A and B. From previous testing procedures, the following probabilities are assumed to be known:

P(A fails) = 0.2

P(B fails alone) = 0.15

P(A and B fail) = 0.15

Evaluate the following probabilities

  1. P(A fails| B has failed)
  2. P(A fails alone)

If P (A|B) > P (A), then which of the following is correct:


If A and B are any two events such that P (A) + P (B) − P (A and B) = P (A), then ______.


A committee of 4 students is selected at random from a group consisting 8 boys and 4 girls. Given that there is at least one girl on the committee, calculate the probability that there are exactly 2 girls on the committee.


A factory produces bulbs. The probability that anyone bulb is defective is `1/50` and they are packed in boxes of 10. From a single box, find the probability that more than 8 bulbs work properly


A shopkeeper sells three types of flower seeds A1, A2 and A3. They are sold as a mixture where the proportions are 4:4:2 respectively. The germination rates of the three types of seeds are 45%, 60% and 35%. Calculate the probability of a randomly chosen seed to germinate


If P(B) = `3/5`, P(A|B) = `1/2` and P(A∪ B) = `4/5`, then P(A∪ B)′ + P( A′ ∪ B) = ______.


Three persons, A, B and C, fire at a target in turn, starting with A. Their probability of hitting the target are 0.4, 0.3 and 0.2 respectively. The probability of two hits is ______.


The probability that a person is not a swimmer is 0.3. The probability that out of 5 persons 4 are swimmers is ______.


If A and B are such that P(A' ∪ B') = `2/3` and P(A ∪ B) = `5/9` then P(A') + P(B') = ______.


If 0 < P(A) < 1, 0 < P(B) < 1 and P(A ∪ B) = P(A) + P(B) – P(A)P(B), then 


If 'A' and 'B' are two events, such that P(A)0 and P(B/A) = 1 then.


If P(A/B) > P(A), then which of the following is correct:-


If A and B are any two events such that P(A) + P(B) – P(A and B) = P(A), then.


Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, then what will be the value of P(E/F) and P(F/E).


What will be the value of P(A ∪ B) it 2P(A) = P(B) = `5/13` and P(A/B) = `?/5`


If P(A) = `6/11`, P(B) = `5/11` and P(A ∪ B) = `7/11`, then what will be the value of P(A ∩ B)


Given that two numbers appearing on throwing two dice are different. Find the probability of the event the sum of numbers on the dice is 4.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×