Advertisements
Advertisements
प्रश्न
If A and B are events such that P (A|B) = P(B|A), then ______.
पर्याय
A ⊂ B but A ≠ B
A = B
A ∩ B = Φ
P(A) = P(B)
उत्तर
If A and B are events such that P (A|B) = P(B|A), then P(A) = P(B).
Explanation:
P(A|B) = P(B|A)
`(P(A ∩ B))/(P(B)) = (P(B ∩ A))/(P(A))`
⇒ P(A) = P(B)
APPEARS IN
संबंधित प्रश्न
In a hostel, 60% of the students read Hindi newspaper, 40% read English newspaper and 20% read both Hindi and English news papers. A student is selected at random.
Find the probability that she reads neither Hindi nor English news papers.
In a hostel, 60% of the students read Hindi newspaper, 40% read English newspaper and 20% read both Hindi and English news papers. A student is selected at random.
If she reads Hindi news paper, find the probability that she reads English news paper.
In a hostel, 60% of the students read Hindi newspaper, 40% read English newspaper and 20% read both Hindi and English news papers. A student is selected at random.
If she reads English news paper, find the probability that she reads Hindi news paper.
Bag I contains 3 red and 4 black balls and Bag II contains 4 red and 5 black balls. One ball is transferred from Bag I to Bag II and then a ball is drawn from Bag II. The ball so drawn is found to be red in colour. Find the probability that the transferred ball is black.
If A and B are two events such that P (A) ≠ 0 and P(B|A) = 1, then ______.
If P (A|B) > P (A), then which of the following is correct:
If A and B are any two events such that P (A) + P (B) − P (A and B) = P (A), then ______.
A and B are two candidates seeking admission in a college. The probability that A is selected is 0.7 and the probability that exactly one of them is selected is 0.6. Find the probability that B is selected.
A factory produces bulbs. The probability that anyone bulb is defective is `1/50` and they are packed in boxes of 10. From a single box, find the probability that exactly two bulbs are defective
A factory produces bulbs. The probability that anyone bulb is defective is `1/50` and they are packed in boxes of 10. From a single box, find the probability that more than 8 bulbs work properly
A shopkeeper sells three types of flower seeds A1, A2 and A3. They are sold as a mixture where the proportions are 4:4:2 respectively. The germination rates of the three types of seeds are 45%, 60% and 35%. Calculate the probability of a randomly chosen seed to germinate
A shopkeeper sells three types of flower seeds A1, A2 and A3. They are sold as a mixture where the proportions are 4:4:2 respectively. The germination rates of the three types of seeds are 45%, 60% and 35%. Calculate the probability that it will not germinate given that the seed is of type A3
If P(B) = `3/5`, P(A|B) = `1/2` and P(A∪ B) = `4/5`, then P(A∪ B)′ + P( A′ ∪ B) = ______.
Let P(A) = `7/13`, P(B) = `9/13` and P(A ∩ B) = `4/13`. Then P( A′|B) is equal to ______.
Three persons, A, B and C, fire at a target in turn, starting with A. Their probability of hitting the target are 0.4, 0.3 and 0.2 respectively. The probability of two hits is ______.
If 'A' and 'B' are events such that `P(A/B) = P(B/A)` then:-
The probability that a student is not swimmer is `1/5`, Then he probability that out of five students, for are swimmers is
If 'A' and 'B' are two events, such that P(A)0 and P(B/A) = 1 then.
If P(A/B) > P(A), then which of the following is correct:-
If A and B are any two events such that P(A) + P(B) – P(A and B) = P(A), then.
Compute P(A/B) If P(B) = 0.5, P(A ∩ B) = 0.32
If P(A) = `6/11`, P(B) = `5/11` and P(A ∪ B) = `7/11`, then what will be the value of P(A ∩ B)
Determine P(E/F) if mother father and son line up at random for a tamily pictur. E = son on one end F. Father in middle.
Given that two numbers appearing on throwing two dice are different. Find the probability of the event the sum of numbers on the dice is 4.
Read the following passage and answer the questions given below.
![]() There are two antiaircraft guns, named as A and B. The probabilities that the shell fired from them hits an airplane are 0.3 and 0.2 respectively. Both of them fired one shell at an airplane at the same time. |
- What is the probability that the shell fired from exactly one of them hit the plane?
- If it is known that the shell fired from exactly one of them hit the plane, then what is the probability that it was fired from B?