मराठी

If A and B are two independent events such that P(A∩ B) =2/15 and P(A ∩ B) = 1/6, then find P(A) and P(B). - Mathematics

Advertisements
Advertisements

प्रश्न

If A and B are two independent events such that `P(barA∩ B) =2/15 and P(A ∩ barB) = 1/6`, then find P(A) and P(B).

उत्तर

It is given that A and B are independent events.

`P(barA∩B)=2/15`

`∴P(barA) P(B)=2/15         .....(1)`



Also`(P∩barB)=1/6`

`∴P(A) P(barB)=1/6`

`⇒P(A)=1/(6[1−P(B)])        .....(2)`

From (1), we have

`[1−P(A)]P(B)=2/15`

`[1−1/(6[1−P(B)])]P(B)=2/15`

`{(6−6P(B)−1)/(6[1−P(B)])}P(B)=2/15`

`5 P(B)−6[P(B)]^2=(12[1−P(B)])/15`

`25P(B)−30[P(B)]^2=4−4P(B)`

`30[P(B)]^2−29P(B)+4=0`

`30[P(B)]^2−24P(B)−5P(B)+4=0`

`6P(B)[5P(B)−4]−1[5P(B)−4]=0`

`[5P(B)−4] [6P(B)−1]=0`

`P(B)=4/5, 1/6`

For P(B) = 4/5, using (2), we have

`P(A)=1/(6[1−P(B)] )          `

`\=1/(6[1−4/5])       `

`=5/6`

For P(B) = 1/6, using (2), we have

`P(A)=1/(6[1−16] )     `

`=1/5`

`∴ P(A)=5/6, P(B)=4/5 or P(A)=1/5, P(B)=1/6`

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2014-2015 (March) Delhi Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Events A and B are such that `P(A) = 1/2, P(B) = 7/12 and P("not A or not B") = 1/4` . State whether A and B are independent?


Two events, A and B, will be independent if ______.


In a race, the probabilities of A and B winning the race are `1/3` and `1/6` respectively. Find the probability of neither of them winning the race.


The probabilities of solving a specific problem independently by A and B are `1/3` and `1/5` respectively. If both try to solve the problem independently, find the probability that the problem is solved.


A problem in statistics is given to three students A, B, and C. Their chances of solving the problem are `1/3`, `1/4`, and `1/5` respectively. If all of them try independently, what is the probability that, exactly two students solve the problem?


One-shot is fired from each of the three guns. Let A, B, and C denote the events that the target is hit by the first, second and third guns respectively. assuming that A, B, and C are independent events and that P(A) = 0.5, P(B) = 0.6, and P(C) = 0.8, then find the probability that at least one hit is registered.


An urn contains four tickets marked with numbers 112, 121, 122, 222 and one ticket is drawn at random. Let Ai (i = 1, 2, 3) be the event that ith digit of the number of the ticket drawn is 1. Discuss the independence of the events A1, A2, and A3.


The odds against a husband who is 55 years old living till he is 75 is 8: 5 and it is 4: 3 against his wife who is now 48, living till she is 68. Find the probability that at least one of them will be alive 20 years hence.


Two hundred patients who had either Eye surgery or Throat surgery were asked whether they were satisfied or unsatisfied regarding the result of their surgery

The follwoing table summarizes their response:

Surgery Satisfied Unsatisfied Total
Throat 70 25 95
Eye 90 15 105
Total 160 40 200

If one person from the 200 patients is selected at random, determine the probability that person was unsatisfied given that the person had eye surgery


The probability that a man who is 45 years old will be alive till he becomes 70 is `5/12`. The probability that his wife who is 40 years old will be alive till she becomes 65 is `3/8`. What is the probability that, 25 years hence,

  1. the couple will be alive
  2. exactly one of them will be alive
  3. none of them will be alive
  4. at least one of them will be alive

A bag contains 3 yellow and 5 brown balls. Another bag contains 4 yellow and 6 brown balls. If one ball is drawn from each bag, what is the probability that, the balls are of different color?


A bag contains 3 red and 5 white balls. Two balls are drawn at random one after the other without replacement. Find the probability that both the balls are white.

Solution: Let,

A : First ball drawn is white

B : second ball drawn in white.

P(A) = `square/square`

After drawing the first ball, without replacing it into the bag a second ball is drawn from the remaining `square` balls.

∴ P(B/A) = `square/square`

∴ P(Both balls are white) = P(A ∩ B)

`= "P"(square) * "P"(square)`

`= square * square`

= `square`


Solve the following:

If P(A) = `"P"("A"/"B") = 1/5, "P"("B"/"A") = 1/3` the find `"P"("B'"/"A'")`


Solve the following:

Let A and B be independent events with P(A) = `1/4`, and P(A ∪ B) = 2P(B) – P(A). Find `"P"("A"/"B")`


Solve the following:

A and B throw a die alternatively till one of them gets a 3 and wins the game. Find the respective probabilities of winning. (Assuming A begins the game)


Two dice are thrown together and the total score is noted. The events E, F and G are ‘a total of 4’, ‘a total of 9 or more’, and ‘a total divisible by 5’, respectively. Calculate P(E), P(F) and P(G) and decide which pairs of events, if any, are independent.


A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("A"/"B")`


A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("A'"/"B")`


Let E1 and E2 be two independent events such that P(E1) = P1 and P(E2) = P2. Describe in words of the events whose probabilities are: P1P2 


Let E1 and E2 be two independent events such that P(E1) = P1 and P(E2) = P2. Describe in words of the events whose probabilities are: (1 – P1) P2 


Let E1 and E2 be two independent events such that P(E1) = P1 and P(E2) = P2. Describe in words of the events whose probabilities are: 1 – (1 – P1)(1 – P2


Two dice are tossed. Find whether the following two events A and B are independent: A = {(x, y): x + y = 11} B = {(x, y): x ≠ 5} where (x, y) denotes a typical sample point.


If A and B are two events such that P(B) = `3/5`, P(A|B) = `1/2` and P(A ∪ B) = `4/5`, then P(A) equals ______.


If A and B are such events that P(A) > 0 and P(B) ≠ 1, then P(A′|B′) equals ______.


One card is drawn at random from a well-shuffled deck of 52 cards. In which of the following case is the events E and F independent?

E : ‘the card drawn is black’

F : ‘the card drawn is a king’


The probability of obtaining an even prime number on each die when a pair of dice is rolled is


Two events 'A' and 'B' are said to be independent if


If P(A) = `3/5` and P(B) = `1/5`, find P(A ∩ B), If A and B are independent events.


Five fair coins are tossed simultaneously. The probability of the events that at least one head comes up is ______.


The probability of the event A occurring is `1/3` and of the event B occurring is `1/2`. If A and B are independent events, then find the probability of neither A nor B occurring.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×