Advertisements
Advertisements
प्रश्न
Solve the following:
Let A and B be independent events with P(A) = `1/4`, and P(A ∪ B) = 2P(B) – P(A). Find P(B)
उत्तर
A and B are independent events.
∴ P(A ∩ B) = P(A) × P(B)
P(A ∪ B) = P(A) + P(B) – P(A ∩ B)
∴ P(A ∪ B) = P(A) + P(B) – P(A) × P(B)
∴ 2P(B) – P(A) = P(A) + P(B) – P(A) × P(B) ...[∵ P(A ∪ B) = 2P(B) – P(A)]
∴ `2"P"("B") - 1/4 = 1/4 + "P"("B") - 1/4 xx "P"("B")`
∴ `2"P"("B") - "P"("B") + 1/4 "P"("B") = 1/4 + 1/4`
∴ `5/4 "P"("B") = 2/4`
∴ P(B) = `2/5`
APPEARS IN
संबंधित प्रश्न
A bag contains 4 balls. Two balls are drawn at random (without replacement) and are found to be white. What is the probability that all balls in the bag are white?
If A and B are two events such that `P(A) = 1/4, P(B) = 1/2 and P(A ∩ B) = 1/8`, find P (not A and not B).
A speaks the truth in 60% of the cases, while B is 40% of the cases. In what percent of cases are they likely to contradict each other in stating the same fact?
A problem in statistics is given to three students A, B, and C. Their chances of solving the problem are `1/3`, `1/4`, and `1/5` respectively. If all of them try independently, what is the probability that, problem is not solved
A problem in statistics is given to three students A, B, and C. Their chances of solving the problem are `1/3`, `1/4`, and `1/5` respectively. If all of them try independently, what is the probability that, exactly two students solve the problem?
An urn contains four tickets marked with numbers 112, 121, 122, 222 and one ticket is drawn at random. Let Ai (i = 1, 2, 3) be the event that ith digit of the number of the ticket drawn is 1. Discuss the independence of the events A1, A2, and A3.
The probability that a student X solves a problem in dynamics is `2/5` and the probability that student Y solves the same problem is `1/4`. What is the probability that
- the problem is not solved
- the problem is solved
- the problem is solved exactly by one of them
A bag contains 3 yellow and 5 brown balls. Another bag contains 4 yellow and 6 brown balls. If one ball is drawn from each bag, what is the probability that, the balls are of different color?
A family has two children. Find the probability that both the children are girls, given that atleast one of them is a girl.
Select the correct option from the given alternatives :
The odds against an event are 5:3 and the odds in favour of another independent event are 7:5. The probability that at least one of the two events will occur is
Solve the following:
If P(A ∩ B) = `1/2`, P(B ∩ C) = `1/3`, P(C ∩ A) = `1/6` then find P(A), P(B) and P(C), If A,B,C are independent events.
Solve the following:
Let A and B be independent events with P(A) = `1/4`, and P(A ∪ B) = 2P(B) – P(A). Find `"P"("B'"/"A")`
Solve the following:
Consider independent trails consisting of rolling a pair of fair dice, over and over What is the probability that a sum of 5 appears before sum of 7?
If A and B are independent events such that P(A) = p, P(B) = 2p and P(Exactly one of A, B) = `5/9`, then p = ______.
For a loaded die, the probabilities of outcomes are given as under:
P(1) = P(2) = 0.2, P(3) = P(5) = P(6) = 0.1 and P(4) = 0.3. The die is thrown two times. Let A and B be the events, ‘same number each time’, and ‘a total score is 10 or more’, respectively. Determine whether or not A and B are independent.
Refer to Question 1 above. If the die were fair, determine whether or not the events A and B are independent.
A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("A"/"B")`
If A and B are two events and A ≠ Φ, B ≠ Φ, then ______.
If A and B are such events that P(A) > 0 and P(B) ≠ 1, then P(A′|B′) equals ______.
Let A and B be two events such that P(A) = `3/8`, P(B) = `5/8` and P(A ∪ B) = `3/4`. Then P(A|B).P(A′|B) is equal to ______.
If the events A and B are independent, then P(A ∩ B) is equal to ______.
Two events E and F are independent. If P(E) = 0.3, P(E ∪ F) = 0.5, then P(E|F) – P(F|E) equals ______.
Let P(A) > 0 and P(B) > 0. Then A and B can be both mutually exclusive and independent.
If A and B are independent events, then A′ and B′ are also independent
If A and B are two events such that P(A) > 0 and P(A) + P(B) >1, then P(B|A) ≥ `1 - ("P"("B'"))/("P"("A"))`
If A, B and C are three independent events such that P(A) = P(B) = P(C) = p, then P(At least two of A, B, C occur) = 3p2 – 2p3
If A and B are two events such that P(A|B) = p, P(A) = p, P(B) = `1/3` and P(A ∪ B) = `5/9`, then p = ______.
Let A and B be two events. If P(A | B) = P(A), then A is ______ of B.
One card is drawn at random from a well-shuffled deck of 52 cards. In which of the following case is the events E and F independent?
E : ‘the card drawn is black’
F : ‘the card drawn is a king’
Two cards are drawn at random and without replacement from a pack of 52 playing cards. Find the probability that both the cards are black.
Events A and Bare such that P(A) = `1/2`, P(B) = `7/12` and `P(barA ∪ barB) = 1/4`. Find whether the events A and B are independent or not.
Given two independent events, if the probability that exactly one of them occurs is `26/49` and the probability that none of them occurs is `15/49`, then the probability of more probable of the two events is ______.
The probability of the event A occurring is `1/3` and of the event B occurring is `1/2`. If A and B are independent events, then find the probability of neither A nor B occurring.