मराठी

Refer to Question 1 above. If the die were fair, determine whether or not the events A and B are independent. - Mathematics

Advertisements
Advertisements

प्रश्न

Refer to Question 1 above. If the die were fair, determine whether or not the events A and B are independent.

बेरीज

उत्तर

We have A = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}

∴ n(A) = 6 and n(S) = 6 × 6 = 36

So, P(A) = `("n"("A"))/("n"("S")) = 6/36 = 1/6`

And B = {(4, 6), (6, 4), (5, 5), (5, 6), (6, 5), (6, 6)}

n(B) = 6 and n(S) = 36

∴ P(B) = `("n"("B"))/("n"("S")) = 6/36 = 1/6`

A ∩ B = {(5, 5), (6, 6)}

∴ P(A ∩ B) = `2/36 = 1/18`

Therefore, if A and B are independent

Then P(A ∩ B) = P(A) . P(B)

⇒ `1/18 ≠ 1/6 xx 1/6`

⇒ `1/18 ≠ 1/36`

Hence, A and B are not independent events.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Probability - Exercise [पृष्ठ २७१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 13 Probability
Exercise | Q 2 | पृष्ठ २७१

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If A and B are two independent events such that `P(barA∩ B) =2/15 and P(A ∩ barB) = 1/6`, then find P(A) and P(B).


A die, whose faces are marked 1, 2, 3 in red and 4, 5, 6 in green is tossed. Let A be the event "number obtained is even" and B be the event "number obtained is red". Find if A and B are independent events.


If P(A) = 0·4, P(B) = p, P(A ⋃ B) = 0·6 and A and B are given to be independent events, find the value of 'p'.


A problem in statistics is given to three students A, B, and C. Their chances of solving the problem are `1/3`, `1/4`, and `1/5` respectively. If all of them try independently, what is the probability that, problem is solved?


One-shot is fired from each of the three guns. Let A, B, and C denote the events that the target is hit by the first, second and third guns respectively. assuming that A, B, and C are independent events and that P(A) = 0.5, P(B) = 0.6, and P(C) = 0.8, then find the probability that at least one hit is registered.


The probability that a student X solves a problem in dynamics is `2/5` and the probability that student Y solves the same problem is `1/4`. What is the probability that

  1. the problem is not solved
  2. the problem is solved
  3. the problem is solved exactly by one of them

Two hundred patients who had either Eye surgery or Throat surgery were asked whether they were satisfied or unsatisfied regarding the result of their surgery.

The following table summarizes their response:

Surgery Satisfied Unsatisfied Total
Throat 70 25 95
Eye 90 15 105
Total 160 40 200

If one person from the 200 patients is selected at random, determine the probability the person had Throat surgery given that the person was unsatisfied.


The probability that a man who is 45 years old will be alive till he becomes 70 is `5/12`. The probability that his wife who is 40 years old will be alive till she becomes 65 is `3/8`. What is the probability that, 25 years hence,

  1. the couple will be alive
  2. exactly one of them will be alive
  3. none of them will be alive
  4. at least one of them will be alive

A bag contains 3 yellow and 5 brown balls. Another bag contains 4 yellow and 6 brown balls. If one ball is drawn from each bag, what is the probability that, both the balls are of the same color?


A bag contains 3 yellow and 5 brown balls. Another bag contains 4 yellow and 6 brown balls. If one ball is drawn from each bag, what is the probability that, the balls are of different color?


A bag contains 3 red and 5 white balls. Two balls are drawn at random one after the other without replacement. Find the probability that both the balls are white.

Solution: Let,

A : First ball drawn is white

B : second ball drawn in white.

P(A) = `square/square`

After drawing the first ball, without replacing it into the bag a second ball is drawn from the remaining `square` balls.

∴ P(B/A) = `square/square`

∴ P(Both balls are white) = P(A ∩ B)

`= "P"(square) * "P"(square)`

`= square * square`

= `square`


A family has two children. Find the probability that both the children are girls, given that atleast one of them is a girl.


Solve the following:

If P(A) = `"P"("A"/"B") = 1/5, "P"("B"/"A") = 1/3` the find `"P"("B'"/"A'")`


Solve the following:

Find the probability that a year selected will have 53 Wednesdays


Solve the following:

For three events A, B and C, we know that A and C are independent, B and C are independent, A and B are disjoint, P(A ∪ C) = `2/3`, P(B ∪ C) = `3/4`, P(A ∪ B ∪ C) = `11/12`. Find P(A), P(B) and P(C)


Solve the following:

Consider independent trails consisting of rolling a pair of fair dice, over and over What is the probability that a sum of 5 appears before sum of 7?


Two dice are thrown together. Let A be the event ‘getting 6 on the first die’ and B be the event ‘getting 2 on the second die’. Are the events A and B independent?


If A and B are independent events such that 0 < P(A) < 1 and 0 < P(B) < 1, then which of the following is not correct?


Three events A, B and C are said to be independent if P(A ∩ B ∩ C) = P(A) P(B) P(C).


Two dice are thrown together and the total score is noted. The events E, F and G are ‘a total of 4’, ‘a total of 9 or more’, and ‘a total divisible by 5’, respectively. Calculate P(E), P(F) and P(G) and decide which pairs of events, if any, are independent.


A and B are events such that P(A) = 0.4, P(B) = 0.3 and P(A ∪ B) = 0.5. Then P(B′ ∩ A) equals ______.


If A and B are two independent events with P(A) = `3/5` and P(B) = `4/9`, then P(A′ ∩ B′) equals ______.


If A and B are mutually exclusive events, then they will be independent also.


If A and B are two events such that P(A|B) = p, P(A) = p, P(B) = `1/3` and P(A ∪ B) = `5/9`, then p = ______.


If A, B are two events such that `1/8 ≤ P(A ∩ B) ≤ 3/8` then


Two cards are drawn at random and without replacement from a pack of 52 playing cards. Find the probability that both the cards are black.


The probability that A hits the target is `1/3` and the probability that B hits it, is `2/5`. If both try to hit the target independently, find the probability that the target is hit.


Given two independent events, if the probability that exactly one of them occurs is `26/49` and the probability that none of them occurs is `15/49`, then the probability of more probable of the two events is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×