Advertisements
Advertisements
प्रश्न
If P(A) = 0·4, P(B) = p, P(A ⋃ B) = 0·6 and A and B are given to be independent events, find the value of 'p'.
उत्तर
If A and B are independent events, then
\[P\left( A \cap B \right) = P\left( A \right)P\left( B \right)\]
\[ \therefore P\left( A \cap B \right) = 0 . 4p \left[ \because P\left( A \right) = 0 . 4 \text { and }P\left( B \right) = p \right]\]
As P(A ⋃ B) = 0·6
So,
\[P\left( A \cup B \right) = P\left( A \right) + P\left( B \right) - P\left( A \cap B \right)\]
\[ \Rightarrow 0 . 6 = 0 . 4 + p - 0 . 4p\]
\[ \Rightarrow 0 . 2 = 0 . 6p\]
\[ \Rightarrow p = \frac{1}{3}\]
APPEARS IN
संबंधित प्रश्न
A card from a pack of 52 playing cards is lost. From the remaining cards of the pack three cards are drawn at random (without replacement) and are found to be all spades. Find the probability of the lost card being a spade.
Given that the events A and B are such that `P(A) = 1/2, PA∪B=3/5 and P (B) = p`. Find p if they are
- mutually exclusive
- independent.
Let A and B be independent events with P (A) = 0.3 and P (B) = 0.4. Find
- P (A ∩ B)
- P (A ∪ B)
- P (A | B)
- P (B | A)
Given two independent events A and B such that P (A) = 0.3, P (B) = 0.6. Find
- P (A and B)
- P(A and not B)
- P(A or B)
- P(neither A nor B)
One card is drawn at random from a well-shuffled deck of 52 cards. In which of the following case is the events E and F independent?
E : ‘the card drawn is a king or queen’
F : ‘the card drawn is a queen or jack’
Prove that if E and F are independent events, then the events E and F' are also independent.
A speaks the truth in 60% of the cases, while B is 40% of the cases. In what percent of cases are they likely to contradict each other in stating the same fact?
The probabilities of solving a specific problem independently by A and B are `1/3` and `1/5` respectively. If both try to solve the problem independently, find the probability that the problem is solved.
A problem in statistics is given to three students A, B, and C. Their chances of solving the problem are `1/3`, `1/4`, and `1/5` respectively. If all of them try independently, what is the probability that, problem is not solved
The odds against a husband who is 55 years old living till he is 75 is 8: 5 and it is 4: 3 against his wife who is now 48, living till she is 68. Find the probability that at least one of them will be alive 20 years hence.
A bag contains 3 yellow and 5 brown balls. Another bag contains 4 yellow and 6 brown balls. If one ball is drawn from each bag, what is the probability that, both the balls are of the same color?
Bag A contains 3 red and 2 white balls and bag B contains 2 red and 5 white balls. A bag is selected at random, a ball is drawn and put into the other bag, and then a ball is drawn from that bag. Find the probability that both the balls drawn are of same color
A family has two children. Find the probability that both the children are girls, given that atleast one of them is a girl.
Solve the following:
If P(A ∩ B) = `1/2`, P(B ∩ C) = `1/3`, P(C ∩ A) = `1/6` then find P(A), P(B) and P(C), If A,B,C are independent events.
Solve the following:
Let A and B be independent events with P(A) = `1/4`, and P(A ∪ B) = 2P(B) – P(A). Find `"P"("B'"/"A")`
Solve the following:
A and B throw a die alternatively till one of them gets a 3 and wins the game. Find the respective probabilities of winning. (Assuming A begins the game)
If A and B are independent events such that P(A) = p, P(B) = 2p and P(Exactly one of A, B) = `5/9`, then p = ______.
Three events A, B and C are said to be independent if P(A ∩ B ∩ C) = P(A) P(B) P(C).
For a loaded die, the probabilities of outcomes are given as under:
P(1) = P(2) = 0.2, P(3) = P(5) = P(6) = 0.1 and P(4) = 0.3. The die is thrown two times. Let A and B be the events, ‘same number each time’, and ‘a total score is 10 or more’, respectively. Determine whether or not A and B are independent.
Let E1 and E2 be two independent events such that P(E1) = P1 and P(E2) = P2. Describe in words of the events whose probabilities are: P1P2
Let E1 and E2 be two independent events such that P(E1) = P1 and P(E2) = P2. Describe in words of the events whose probabilities are: P1 + P2 – 2P1P2
If A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A/B) = `1/4`, P(A' ∩ B') equals ______.
One card is drawn at random from a well-shuffled deck of 52 cards. In which of the following case is the events E and F independent?
E : ‘the card drawn is a spade’
F : ‘the card drawn is an ace’
If A, B are two events such that `1/8 ≤ P(A ∩ B) ≤ 3/8` then
The probability of obtaining an even prime number on each die when a pair of dice is rolled is
The probability that A hits the target is `1/3` and the probability that B hits it, is `2/5`. If both try to hit the target independently, find the probability that the target is hit.