हिंदी

A and B are two events such that P(A) = 12, P(B) = 13 and P(A ∩ B) = 14. Find: PABP(AB) - Mathematics

Advertisements
Advertisements

प्रश्न

A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("A"/"B")`

योग

उत्तर

We have P(A) = `1/2`

P(B) = `1/3` 

And P(A ∩ B) = `1/4`

P(A') = `1 - 1/2 = 1/2`

P(B') = `1 - 1/3 = 2/3`

P(A' ∩ B') = 1 – P(A ∪ B)

= 1 – [P(A) + P(B) – P(A ∩ B)]

= `1 - [1/2 + 1/3 - 1/4]`

= `1 - [(6 + 4 + 3)/12]`

= `1 - 7/12`

= `5/12`

`"P"("A"/"B") = ("P"("A" ∩ "B"))/("P"("B"))`

= `(1/4)/(1/3)

= `3/4`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Probability - Exercise [पृष्ठ २७२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 13 Probability
Exercise | Q 7. (i) | पृष्ठ २७२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Events A and B are such that `P(A) = 1/2, P(B) = 7/12 and P("not A or not B") = 1/4` . State whether A and B are independent?


Probability of solving specific problem independently by A and B are `1/2` and `1/3` respectively. If both try to solve the problem independently, find the probability that

  1. the problem is solved
  2. exactly one of them solves the problem.

Prove that if E and F are independent events, then the events E and F' are also independent. 


A speaks the truth in 60% of the cases, while B is 40% of the cases. In what percent of cases are they likely to contradict each other in stating the same fact?


A problem in statistics is given to three students A, B, and C. Their chances of solving the problem are `1/3`, `1/4`, and `1/5` respectively. If all of them try independently, what is the probability that, problem is solved?


A problem in statistics is given to three students A, B, and C. Their chances of solving the problem are `1/3`, `1/4`, and `1/5` respectively. If all of them try independently, what is the probability that, problem is not solved


The odds against a certain event are 5: 2 and odds in favour of another independent event are 6: 5. Find the chance that at least one of the events will happen.


Two hundred patients who had either Eye surgery or Throat surgery were asked whether they were satisfied or unsatisfied regarding the result of their surgery

The follwoing table summarizes their response:

Surgery Satisfied Unsatisfied Total
Throat 70 25 95
Eye 90 15 105
Total 160 40 200

If one person from the 200 patients is selected at random, determine the probability that the person was satisfied given that the person had Throat surgery.


Two hundred patients who had either Eye surgery or Throat surgery were asked whether they were satisfied or unsatisfied regarding the result of their surgery

The follwoing table summarizes their response:

Surgery Satisfied Unsatisfied Total
Throat 70 25 95
Eye 90 15 105
Total 160 40 200

If one person from the 200 patients is selected at random, determine the probability that person was unsatisfied given that the person had eye surgery


Two hundred patients who had either Eye surgery or Throat surgery were asked whether they were satisfied or unsatisfied regarding the result of their surgery.

The following table summarizes their response:

Surgery Satisfied Unsatisfied Total
Throat 70 25 95
Eye 90 15 105
Total 160 40 200

If one person from the 200 patients is selected at random, determine the probability the person had Throat surgery given that the person was unsatisfied.


Two dice are thrown together. Let A be the event 'getting 6 on the first die' and B be the event 'getting 2 on the second die'. Are the events A and B independent?


A family has two children. Find the probability that both the children are girls, given that atleast one of them is a girl.


If A and B are independent events such that 0 < P(A) < 1 and 0 < P(B) < 1, then which of the following is not correct?


For a loaded die, the probabilities of outcomes are given as under:
P(1) = P(2) = 0.2, P(3) = P(5) = P(6) = 0.1 and P(4) = 0.3. The die is thrown two times. Let A and B be the events, ‘same number each time’, and ‘a total score is 10 or more’, respectively. Determine whether or not A and B are independent.


Two dice are thrown together and the total score is noted. The events E, F and G are ‘a total of 4’, ‘a total of 9 or more’, and ‘a total divisible by 5’, respectively. Calculate P(E), P(F) and P(G) and decide which pairs of events, if any, are independent.


Three events A, B and C have probabilities `2/5, 1/3` and `1/2`, , respectively. Given that P(A ∩ C) = `1/5` and P(B ∩ C) = `1/4`, find the values of P(C|B) and P(A' ∩ C').


Let E1 and E2 be two independent events such that P(E1) = P1 and P(E2) = P2. Describe in words of the events whose probabilities are: P1P2 


If A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A/B) = `1/4`, P(A' ∩ B') equals ______.


A and B are events such that P(A) = 0.4, P(B) = 0.3 and P(A ∪ B) = 0.5. Then P(B′ ∩ A) equals ______.


If A and B are such events that P(A) > 0 and P(B) ≠ 1, then P(A′|B′) equals ______.


If A and B are two independent events with P(A) = `3/5` and P(B) = `4/9`, then P(A′ ∩ B′) equals ______.


If A and B are mutually exclusive events, then they will be independent also.


Two independent events are always mutually exclusive.


If A and B are two events such that P(A|B) = p, P(A) = p, P(B) = `1/3` and P(A ∪ B) = `5/9`, then p = ______.


Let A and B be independent events P(A) = 0.3 and P(B) = 0.4. Find P(A ∩ B)


The probability that A hits the target is `1/3` and the probability that B hits it, is `2/5`. If both try to hit the target independently, find the probability that the target is hit.


Let EC denote the complement of an event E. Let E1, E2 and E3 be any pairwise independent events with P(E1) > 0 and P(E1 ∩ E2 ∩ E3) = 0. Then `"P"(("E"_2^"C"  ∩ "E"_3^"C")/"E"_1)` is equal to ______.


Given two events A and B such that (A/B) = 0.25 and P(A ∩ B) = 0.12. The value P(A ∩ B') is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×