Advertisements
Advertisements
प्रश्न
Solve the following:
If P(A) = `"P"("A"/"B") = 1/5, "P"("B"/"A") = 1/3` the find `"P"("A'"/"B")`
उत्तर
Since P(A) = `"P"("A"/"B") = 1/5`,
P(A) = `1/5 and ("P"("A" ∩ "B"))/("P"("B")) = 1/5`
∴ P(A) = `1/5` ...(i)
P(B) = 5P(A ∩ B) ...(ii)
Since `"P"("B"/"A") = 1/3`,
`("P"("A" ∩ "B"))/("P"("A")) =1/3`
∴ P(A) = 3P(A ∩ B) ...(iii)
`"P"("A'"/"B") = ("P"("A'"∩ "B"))/("P"("B")`
= `("P"("B") - "P"("A" ∩ "B"))/("P"("B")`
= `1 - ("P"("A" ∩ "B"))/("P"("B"))`
= `1 - 1/5` ...[From (ii)]
= `4/5`.
APPEARS IN
संबंधित प्रश्न
Probability of solving specific problem independently by A and B are `1/2` and `1/3` respectively. If both try to solve the problem independently, find the probability that
- the problem is solved
- exactly one of them solves the problem.
Prove that if E and F are independent events, then the events E and F' are also independent.
In a race, the probabilities of A and B winning the race are `1/3` and `1/6` respectively. Find the probability of neither of them winning the race.
A speaks the truth in 60% of the cases, while B is 40% of the cases. In what percent of cases are they likely to contradict each other in stating the same fact?
If P(A) = 0·4, P(B) = p, P(A ⋃ B) = 0·6 and A and B are given to be independent events, find the value of 'p'.
A problem in statistics is given to three students A, B, and C. Their chances of solving the problem are `1/3`, `1/4`, and `1/5` respectively. If all of them try independently, what is the probability that, problem is solved?
A problem in statistics is given to three students A, B, and C. Their chances of solving the problem are `1/3`, `1/4`, and `1/5` respectively. If all of them try independently, what is the probability that, problem is not solved
One-shot is fired from each of the three guns. Let A, B, and C denote the events that the target is hit by the first, second and third guns respectively. assuming that A, B, and C are independent events and that P(A) = 0.5, P(B) = 0.6, and P(C) = 0.8, then find the probability that at least one hit is registered.
The probability that a man who is 45 years old will be alive till he becomes 70 is `5/12`. The probability that his wife who is 40 years old will be alive till she becomes 65 is `3/8`. What is the probability that, 25 years hence,
- the couple will be alive
- exactly one of them will be alive
- none of them will be alive
- at least one of them will be alive
A bag contains 3 yellow and 5 brown balls. Another bag contains 4 yellow and 6 brown balls. If one ball is drawn from each bag, what is the probability that, both the balls are of the same color?
Bag A contains 3 red and 2 white balls and bag B contains 2 red and 5 white balls. A bag is selected at random, a ball is drawn and put into the other bag, and then a ball is drawn from that bag. Find the probability that both the balls drawn are of same color
Select the correct option from the given alternatives :
The odds against an event are 5:3 and the odds in favour of another independent event are 7:5. The probability that at least one of the two events will occur is
Solve the following:
Find the probability that a year selected will have 53 Wednesdays
10% of the bulbs produced in a factory are of red colour and 2% are red and defective. If one bulb is picked up at random, determine the probability of its being defective if it is red.
If A and B′ are independent events then P(A′ ∪ B) = 1 – ______.
Let A and B be two independent events. Then P(A ∩ B) = P(A) + P(B)
A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("A"/"B")`
A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("A'"/"B'")`
Two dice are tossed. Find whether the following two events A and B are independent: A = {(x, y): x + y = 11} B = {(x, y): x ≠ 5} where (x, y) denotes a typical sample point.
If A and B are two events and A ≠ Φ, B ≠ Φ, then ______.
If A and B are two events such that P(B) = `3/5`, P(A|B) = `1/2` and P(A ∪ B) = `4/5`, then P(A) equals ______.
If A and B are such events that P(A) > 0 and P(B) ≠ 1, then P(A′|B′) equals ______.
Let A and B be two events such that P(A) = `3/8`, P(B) = `5/8` and P(A ∪ B) = `3/4`. Then P(A|B).P(A′|B) is equal to ______.
If the events A and B are independent, then P(A ∩ B) is equal to ______.
If A and B are independent events, then A′ and B′ are also independent
If A and B are mutually exclusive events, then they will be independent also.
Two independent events are always mutually exclusive.
If A and B are independent, then P(exactly one of A, B occurs) = P(A)P(B') + P(B)P(A')
Let E1 and E2 be two independent events. Let P(E) denotes the probability of the occurrence of the event E. Further, let E'1 and E'2 denote the complements of E1 and E2, respectively. If P(E'1 ∩ E2) = `2/15` and P(E1 ∩ E'2) = `1/6`, then P(E1) is
Five fair coins are tossed simultaneously. The probability of the events that at least one head comes up is ______.
A problem in Mathematics is given to three students whose chances of solving it are `1/2, 1/3, 1/4` respectively. If the events of their solving the problem are independent then the probability that the problem will be solved, is ______.
The probability of the event A occurring is `1/3` and of the event B occurring is `1/2`. If A and B are independent events, then find the probability of neither A nor B occurring.